Allied Telesis 2-way Splitter AT-TQ0292 Benutzerhandbuch

Produktcode
AT-TQ0292
Seite von 72
26 | Allied Telesis Product Catalog 
SUBCAtEGORy
FEAtURE
At-x600-24ts/Xp
At-x600-48ts/Xp
At-x900-12Xt/S
At-x900-24Xt
At-x900-24XS
SwitchBlade x908
x610 Series
SwitchBlade x3112
FORM FACtOR
» 
Desktop
» 
Rack mountable
» 
Stackable
» 
Desktop
» 
Rack mountable
» 
Stackable
» 
Desktop
» 
Rack mountable
» 
Stackable
» 
Desktop
» 
Rack mountable
» 
Stackable
» 
Desktop
» 
Rack mountable
» 
Stackable
» 
Rack mountable
» 
Stackable
See page 12 for the 
new x610 Series 
Layer 3+ Gigabit  
PoE+ switches
See page 28 
for the new  
SwitchBlade x3112 
access edge  
chassis switch
SWitCH FUnCtiOnAlity
Advanced Layer 3
Advanced Layer 3
Advanced Layer 3
Advanced Layer 3
Advanced Layer 3
Advanced Layer 3
pORtS AnD  
MEDiA SUppORt
10/100/1000T
24
44
12
24
SFP
4 (combo) (1000Mbps)
4 (1000Mbps)
12 (combo) (100 or 1000Mbps)
24 (100 or 1000Mbps)
Modular uplinks
1
2
2
8
Fixed XFP (10GbE)
2
2
MODUlAR UplinKS
12 x 10/100/1000T
AT-XEM-12T
AT-XEM-12T
AT-XEM-12T
AT-XEM-12T
12 x SFP (100 or 1000Mbps)
AT-XEM-12S
AT-XEM-12S
AT-XEM-12S
AT-XEM-12S
2 x RJ-45 (10GbE)
AT-XEM-2XT
AT-XEM-2XT
AT-XEM-2XT
AT-XEM-2XT
1 x XFP (10GbE)
AT-XEM-1XP
AT-XEM-1XP
AT-XEM-1XP
AT-XEM-1XP
2 x SFP+ (10GbE)
AT-XEM-2XS
AT-XEM-2XS
AT-XEM-2XS
AT-XEM-2XS
2 x XFP (10GbE)
AT-XEM-2XP
AT-XEM-2XP
AT-XEM-2XP
AT-XEM-2XP
pOWER SUpply
PSU  type
Fixed internal
Fixed internal
Fixed internal
Hot-swap internal
Hot-swap internal
Hot-swap internal
-48vDC PSU option
Redundant PSU support
Redundant PSU chassis (inc 1 PSU)
AT-RPS3204
AT-RPS3204
Additional redundant PSU
AT-PWR3202
AT-PWR3202
AT-PWR01
AT-PWR01
AT-PWR05
SCAlABility
MAC address table size
16K
16K
16K
16K
16K
16K
Stacking (VCStack)
 
AT-StackXG (4)
 
AT-StackXG (4)
 
AT-XEM-STK (2)
 
AT-XEM-STK (2)
 
AT-XEM-STK (2)
 
Rear stacking (2)
EnViROnMEntAl
Cooling
Fan
Fan
Fan
Hot-swappable fan module
Hot-swappable fan module
Hot-swappable fan module
MAnAGEMEnt
Web
IPv6
CLI / Telnet / SNMP
nEtWORK RESiliEnCE
Spanning Tree
Link aggregation (LACP)
VRRP
EPSR
QoS
IEEE 802.1p priority queues
8
8
8
8
8
8
SECURity
IEEE 802.1Q VLANs
4096
4096
4096
4096
4096
4096
RADIUS / TACACS+
SSH/SSL
IEEE 802.1x
DoS protection
ROUtinG
RIPv1 and v2
RIPng
OSPFv2
OSPFv3
VRF-Lite
DiMEnSiOnS
(W x D x H)
44 x 30.5 x 4.4 cm
17.3 x 12 x 1.73 in
44 x 30.5 x 4.4 cm
17.3 x 12 x 1.73 in
44 x 35 x 4.4 cm
17.3 x 13.8 x 1.73 in
44 x 44 x 4.4 cm
17.5 x 17.3 x 1.73 in
44 x 44 x 4.4 cm
17.5 x 17.3 x 1.73 in
44 x 45.6 x 13.2 cm
17.3 x 18 x 5.2 in
Weight
4.6 kg / 10.1 lb (unpackaged)
4.9 kg / 10.8 lb (unpackaged)
5.3 kg / 11.6 lb
7.3 kg / 16.09 lb (with 1 PSU)
7.3 kg / 16.09 lb (with 1 PSU)
14.32 kg / 31.57 lb (no PSU)
Allied Telesis offers versatile, highly resilient 10 Gigabit connections for the most advanced and 
demanding of enterprise, service provider and municipal networks. Capabilities include carrier-grade 
modular and chassis-based switching and access solutions that provide Ethernet Protected Switched 
Rings with sub 50ms failover for mission-critical services.
Switches
Ethernet Protected Switched Rings (EPSR)
Putting a ring of Ethernet switches at the core of a network is a 
simple way to increase the network’s resilience — such a network 
is no longer susceptible to a single point of failure. Traditionally, 
Spanning Tree-based technologies are used to protect rings, but 
they are relatively slow to recover from link failure. This can create 
problems for applications that have strict loss requirements, such 
as voice and video traffic, where the speed of recovery is highly 
significant. EPSR provides high-speed (<50ms) reconfigurations in 
the event of a failure, ensuring no noticeable loss of service in these 
types of installations.
Dual Core Networking
Traditional core switches provide resilience by having one chassis 
actively running, while a second sits in standby. Users therefore pay 
for two chassis, but only achieve the throughput and performance 
of a single chassis. Allied Telesis switches with VCStack virtual 
chassis stacking allow both core switches to pass traffic actively, with 
one also being the backup in the event of a failure. Thus for the 
majority of the time, users benefit from twice the performance of a 
traditional core network.