Intel EP80579 User Manual

Page of 76
Security Software—Intel
®
 QuickAssist Technology Cryptographic API Architecture Overview
Intel
®
 EP80579 Software for Security Applications on Intel
®
 QuickAssist Technology
PG
August 2009
26
Order Number: 320183-004US
GCM
“Galois/Counter Mode (GCM) is a block cipher mode of operation that uses universal 
hashing over a binary Galois field to provide authenticated encryption.” This is an 
excerpt from the GCM specification which can be accessed at
4.4.2
Key Generation
The Cryptographic API module provides TLS and SSL key generation operation along 
with a Mask Generation Function (MGF).
TLS/SSL Generation: For both algorithms functions are provided for the generation of 
the Master-Secret and Key Materials. These are optimized accelerations for use in SSL/
TLS key negotiation and generation applications.
MGF: Takes a seed of specified length and produces a generated mask, which is 
pseudorandom, of the specified size.
4.4.3
Lookaside PKE Overview
This section gives a brief overview of Public Key algorithms and standards relevant for 
EP80579 security software. The following is a list of Public key algorithms/standards:
• Diffie-Hellman (DH) Key Exchange – PKCS #3 v1.4
• RSA Cryptography Standard – PKCS #1 v2.1 and ANSI X9.31
• Digital Signature Algorithm (DSA) – FIPS-186-2
• GCD, Miller-Rabin, Lucas and Fermat primality testing (ANSI X9.80)
4.4.3.1
Diffie-Hellman Key Exchange
DH is used to create a “shared secret”, from which symmetric key information may be 
derived. This Key can be used to encrypt subsequent communications using a 
symmetric key cipher. 
The protocol has two system parameters p and g. They are both public and may be 
used by all the users in a system. Parameter p is a prime number and parameter g 
(usually called a generator) is an integer less than p, with the following property: for 
every number n between 1 and p-1 inclusive, there is a power k of g such that n = g
k
 
mod p.
The underlying mathematical principle is the identity: (g
a
 mod p)
b
 mod p = (g
b
 mod p)
a
 
mod p. DH cryptographic strength is derived from the fact that logarithms are difficult 
to do in a MODP group. A set of standard DH (MODP) groups are defined in RFC-2409 
and RFC-3526. Modulus sizes range from 768 to 4096 bits.
There are two modes of Diffie-Hellman:
• Normal Diffie-Hellman: DH parameters are contained within a certificate, signed 
by a certificate authority (CA).
• Ephemeral Diffie-Hellman: DH parameters are created “on the fly” by the 
negotiating parties. These parameters are then signed using a DSS or RSA 
certificate, which is itself signed by a CA.