Nxp Semiconductors PCA2125 User Manual

Page of 52
 
 
NXP Semiconductors 
UM10301
 
User Manual PCF85x3, PCA8565 and PCF2123, PCA2125
UM10301_1 
© NXP B.V. 2008. All rights reserved.
User manual 
Rev. 01 — 23 December 2008 
40 of 52
•  Access the RTC as little as possible in order to reduce the dynamic current 
consumption by the I
2
C-bus or SPI; 
•  Disable the CLKOUT in battery backup mode. If CLKOUT needs to be enabled select 
the pull-up resistor as large as possible. However, CLKOUT enabled will  dominate 
current consumption and severely limit battery backup time; 
•  Do not connect the pull-up resistors for the serial interface to V
DD
 of the RTC but 
connect them to the supply of the rest of the circuit (V
DD1
unnecessary battery current drain from the battery via the pull-up resistors. If in 
“Power-Off” everything gets powered down except the RTC, the bus lines will often 
not be high impedant. In this case current could run from the battery via the pull-up 
resistors and the bus to GND which would severely reduce the possible battery 
backup time, if the pull-ups were connected to V
DD
 of the RTC; 
•  Select the I
2
C-bus pull-up resistors as large as possible. The value of the pull-up 
resistors is a compromise between current consumption and maximum clock 
frequency. Lower values result in lower RC time constants and thus faster rise time 
of the SCL and SDA lines. Using the I
2
C-bus, data transfers can be made up to 
100 kbit/s in Standard-mode and up to 400 kbit/s in Fast-mode. The corresponding 
required maximum rise times are 1 μs for Standard-mode and 300 ns for Fast-mode. 
The rise time is a product of bus capacitance and the value of the pull-up resistor. 
The bus capacitance is the total capacitance of wire, tracks, connections and pins. 
First estimate the capacities. Track capacities can be calculated with the standard 
formula for a capacitor. Depending on the PCB material used, values for ε may differ.  
For this example a track length of 3 cm is assumed, with a track width of 0.5 mm on 
a copper backed 0.7 mm strong PC-board made from FR4 glass epoxy. 
 
   
F
d
A
C
r
tr
12
12
0
10
9
.
0
0007
.
0
0005
.
0
03
.
0
6
.
4
10
85
.
8
=
=
=
ε
ε
 
 
  Further capacitances are: 
    Microcontroller pin capacitance   C
i
 = 7 pF  (assumption) 
  RTC 
pin 
capacitance 
    C
i
 = 7 pF  (max value for PCF8563) 
Adding these capacitances to the 0.9 pF track capacitance results in a bus 
capacitance of 14.9 pF. 
Consider the V
DD
 related input threshold of V
IH
 = 0.7V
DD
 and V
IL
 = 0.3V
DD
 for the 
purposed of RC time constant calculation. Then V(t) = V
DD
(1 – e
-t/RC
), where t is the 
time since the charging started and RC is the time constant. 
V(t1) = 0.3 x V
DD
 = V
DD
(1 – e
-t1/RC
); then t1 = 0.3566749 x RC 
V(t2) = 0.7 x V
DD
 = V
DD
(1 – e
-t2/RC
); then t2 = 1.2039729 x RC 
T = t2 – t1 = 0.8473 x RC
 
 
The graph in Fig 17 and the equation below show maximum R
P
 as a function of bus 
capacitance for Standard-mode, Fast-mode and Fast-mode Plus. For each mode the 
R
P(max)
 is a function of the rise time maximum and the estimated bus capacitance C
b