Cisco Cisco Prime Optical 10.6 Developer's Guide

Page of 665
Cisco Prime Optical 10.6 GateWay/CORBA Programmer Reference Guide 
 
 
422
 
4.1.4  Flow Domain 
The Flow Domain (FD) associates more MFDs (one for each NE) and the server layer TPs of FPs 
assigned to it. An FD indicates the potential for flow of traffic between a set of points and contains an 
administrative partitioning of the connectionless network domain. 
Connection-oriented subnetworks constitute the widespread transport layer (DWDM, SONET/SDH). 
Connection-oriented subnetworks are shared by many network applications, but connectionless 
subnetworks, such as Metro Ethernet, are deployed as smaller islands dedicated to a single network 
application; for example, a corporate customer site. 
FD provisioning capability allows a Network Management System (NMS) to instantiate and to change an 
FD so it can meet the infrastructure requirement (CPTPs, MFDs) needed to fulfill requests (FDFr setup, 
tear-down, and modification) received from a service order system. An ME can participate in more than 
one FD at the same layer rate, but in only one subnetwork. 
For descriptions of Flow Domain provisioning and inventory interfaces, see the following sections: 
• 
• 
4.1.5  EVC Flow Domain Fragment 
An EVC Flow Domain Fragment (FDFr) is a logical entity that contains a transparent end-to-end 
connectivity between two or more FPs (at the same connectionless layer) within an FD. The FDFr 
represents a Virtual Private Network (VPN) for a single customer in the provider network and enables the 
flow of traffic between FPs.  
The server-layer CPTPs of the FPs that are connected through an FDFr must be assigned to MFDs that 
are associated to the FD that contains the FDFr. If traffic arrives at a point that is a member of an FDFr, it 
emerges at one or more of the other edge FPs that are members of the same FDFr. 
The edge FPs that act as endpoints of the FDFr can be associated with CPTPs connected to customer 
domains or to other provider domains (of the same or different providers). The VLAN IDs of the FPs of 
the same FDFr must be equal and in particular must be the VLAN ID of the outermost frame. An FDFr 
may also support untagged frames or may be unaware of frame tags. 
An FDFr is used to model the EVC and has the following attributes: 
•  Directionality—Either bidirectional or unidirectional. For Ethernet, directionality is always 
bidirectional. 
•  Layered transmission parameters—Technology-specific parameters associated with the layer 
that the FDFr is connecting; for example, Ethernet.  
•  aEnd TPs—A list of FPs that delimit the FDFr and characterize the edges (entry or exit 
points). aEnd TPs are clients of the fdEdge CPTPs. For a bidirectional FDFr, this attribute 
may be combined with zEnd TPs to obtain all the FPs that are associated to the FDFr. For a 
bidirectional Point-to-Point (PPP) FDFr, it is recommended that you specify one TP in aEnd 
and the other TP in zEnd. For a multipoint FDFr or a PPP FDFr that may be expanded to 
multipoint, it is recommended that you specify all the TPs in aEnd. 
•  zEnd TPs—Represents a list of FPs that delimit the FDFr and characterize the edges (entry or 
exit points). zEnd TPs are clients of the fdEdge CPTPs. For a bidirectional FDFr, this 
attribute may be combined with aEnd TPs to obtain all the FPs that are associated to the 
FDFr. 
•  Flexible—Indicates whether the FDFr is fixed or flexible. If the FDFr is fixed, the NMS 
cannot modify or delete it and you cannot add or remove FPs. 
•  Administrative State—Indicates whether the FDFr is locked or unlocked. If the FDFr is 
locked, traffic units cannot flow through the FDFr. If the FDFr is unlocked, traffic units are 
allowed to flow through the FDFr.