Conrad Course material 10025 14 years and over 10025 Manual De Usuario

Los códigos de productos
10025
Descargar
Página de 13
 
Fig. 1: Inner principle of the patch panel 
 
Solar module 
The solar module included consists of several polycrystalline solar cells. The silicon material, made of 
several crystals, is contaminated by intentional doping, which gives a negative and a positive layer. 
The N-layer (negatively doped) is coated dark blue on top, for better absorption of light. The lower 
layer is the P-layer. The electrons are set in motion by impinging light and a voltage arises between 
the two layers described. We can use this voltage and the flowing current. A single crystalline silicon 
solar cell gets ca. 0.5 V per cell. The current depends on the size of the cell. 
 
Fig. 2: Schematic symbol: solar module 
 
Solar motor 
There is a solar motor in the educational kit that starts up with just a small amount of current and a 
little voltage. The motor in the educational kit is a low-voltage DC motor. 
 
Fig. 3: Schematic symbol: motor 
 
 Diode 
Diodes let the current pass in only one direction. For that reason, they are used to rectify AC voltages 
and to block undesirable polarity with DC voltage, among other things. You can picture the functioning 
of a diode in normal operation most easily as a non-return valve (water installations).  
 
Fig. 4: Silicon diode, type 1N 4148. The cathode of the diode is identified by the imprinted stripe; the 
other connection wire is the anode. The technical current direction goes from the anode to the 
cathode.
 
 
In forward direction (schematic symbol: arrow), with a silicon diode such as the 1N 4148, significant 
current only begins to flow at a voltage of ca. 0.6 to 0.7 V.  
 
Fig. 5: Schematic symbol: diode  
 
As a rule, there are two kinds of diodes used in photovoltaic systems: blocking diodes and bypass 
diodes. Blocking diodes prevent the battery from discharging through the photovoltaic modules when 
sunlight is lacking. The bypass diodes protect the solar cells and the panel from possible damage 
which could be caused by partial shading.  
 
 LEDs 
The LED (light emitting diode) has one further characteristic: it shines when voltage is applied. 
Normally, LEDs should always be operated with a series resistor for current limiting. Red LEDs require 
the least voltage (1.8 V). After them are the yellow, green, blue and finally white LEDs with the highest 
voltage (up to 3.6 V).  
 
Fig. 6: Pin assignment of LEDs: the anode (+) with the longer connection wire and the cathode (-) 
additionally marked with a flat area (6a) on the enclosure
 
 
Fig. 7: Schematic symbol: LED 
 
Along with the “normal” LEDs there are also special designs such as a flashing LED. You can identify 
a flashing LED by the small black spot within the red enclosure. This spot contains a tiny electronic 
system in the form of an integrated circuit which causes the LED to flash as soon as the correct 
voltage is applied. 
 Resistors 
A resistor is a passive component in electric and electronic circuits. Its main task is reduction of the 
flowing current to “reasonable” values. The resistance values are imprinted in the form of coded 
coloured rings. The first four coloured rings indicate the resistance value according to the following 
table. The fifth (narrower) coloured ring stands for the tolerance of the resistance value. A tip for easy 
differentiation of the resistors in the educational kit: The 10 Ω type is thicker than the others. There are 
two of the 100 Ω type.