Conrad Course material 10025 14 years and over 10025 Manual De Usuario

Los códigos de productos
10025
Descargar
Página de 13
For the following experiments, you need a bright light source or full, direct sunlight for the solar 
module. 
 
Fig. 31: Experimental set-up with the solar module, patch panel and motor 
 
Fig. 32: Circuit diagram: solar module and motor 
 
You can also attach the motor to a cardboard box with a piece of double-sided adhesive tape.  
 
Fig. 33: The disc is turning 
 
If sufficient light shines on the solar module, the motor axle begins to turn by itself. If there is too little 
light, you may also need to turn the motor a little with your finger to set it in motion. This is due to the 
fact that the motor’s starting current can be more than double the operating current in continuous 
operation.  
 
Fig. 34: “Starting” the motor with the index finger with too little light incidence; reason: the motor’s 
starting current is greater than its current in continuous operation.
 
 
This experiment also shows the different operational modes of solar power and power that comes from 
batteries. The current requirement when starting the motor is completely supplied by batteries without 
any problem. The solar module in direct operation can only supply to the consumer current that is 
converted by means of the momentary irradiation of light (and the efficiency of the solar cells). If you 
have a 1.5 V battery or accumulator cell handy, just for fun connect it to the motor. 
 
10.  Step: Solar kinetic energy with starting help 
Experimental set-up: solar module, patch panel, motor, 4,700 µF electrolytic capacitor, flashing LED 
 
For the following experiments, you need a bright light source (or full, direct sunlight) for the solar 
module. 
 
The electrolytic capacitor is charged by the solar module in this circuit. The flashing LED and the solar 
motor are connected in series with the capacitor storage. The LED flashes with increasing charge in 
the electrolytic capacitor. If sufficient light and energy flow are available, the solar motor receives 
current pulses by means of which a pulsating rotary motion can take place. 
 
Fig. 35: Patch panel set-up with wire switch 
 
Fig. 36: Circuit diagram 
 
With a wire switch, you can now connect the motor directly to the electrolytic capacitor. If the 
electrolytic capacitor is charged, the disc rotates at high speed.  
 
Additional experiments: Experiment both with and without a wire switch and with a 10 Ω, 100 Ω and 1 
kΩ resistor in each case. What changes with the motor speed and how it functions?  
 
Fig 36a: Additional experiment with resistors 
 
The additional experiments as illustrated in Fig. 36a show that with the resistors the current flow to the 
motor can be changed by means of the resistors and thus the speed is affected. 
 
11.  Step: Shading on the solar module – causes and effects 
Experimental set-up: solar module, patch panel, motor or LEDs with series resistor 
 
For the following experiments, you need a bright light source (or full, direct sunlight) for the solar 
module. 
 
Fig. 39 shows the experimental set-up. The LEDs (alternatively, the motor) are connected to the 
module, the module is oriented toward the light source and the motor shaft turns. If you do the 
experiments outdoors with bright sunshine, the motor is better than the LEDs as a consumption