Mitsubishi HG-MR Manuel D’Utilisation
1. INTRODUCTION
1 - 4
(2) Sound generation
Though the brake lining may rattle during operation, it poses no functional problem.
If braking sounds, it may be improved by setting the machine resonance suppression filter in the servo
amplifier (converter unit) parameters. For details, refer to each servo amplifier instruction manual.
If braking sounds, it may be improved by setting the machine resonance suppression filter in the servo
amplifier (converter unit) parameters. For details, refer to each servo amplifier instruction manual.
(3) Selection of surge absorbers for electromagnetic brake circuit
The following shows an example how to select a varistor with a surge absorber.
(a) Selection conditions
(a) Selection conditions
Item Condition
24 V DC
Relay
Brake coil
U
Varistor
Electromagnetic brake
specification
specification
R [Ω]: Resistance
L [H]: Inductance
Vb [V]: Power supply voltage
L [H]: Inductance
Vb [V]: Power supply voltage
Desired suppression
voltage
voltage
Vs [V] or less
Durable surge
application time
application time
N times
(b) Tentative selection and verification of surge absorber
1) Maximum allowable circuit voltage of varistor
Tentatively select a varistor whose maximum allowable voltage is larger than Vb [V].
2) Brake current (Ib)
Ib =
Vb
R
[A]
3) Energy (E) generated by brake coil
E =
2
L × lb
2
[J]
4) Varistor limit voltage (Vi)
From the energy (E) generated in the brake coil and the varister characteristic diagram, calculate
the varistor limit voltage (Vi) when the brake current (Ib) flows into the tentatively selected varistor
during opening of the circuit.
Vi is favorable when the varistor limit voltage (Vi) [V] is smaller than the desired suppressed
voltage (Vs) [V].
If Vi is not smaller than Vs, reselect a varistor or improve the withstand voltage of devices.
the varistor limit voltage (Vi) when the brake current (Ib) flows into the tentatively selected varistor
during opening of the circuit.
Vi is favorable when the varistor limit voltage (Vi) [V] is smaller than the desired suppressed
voltage (Vs) [V].
If Vi is not smaller than Vs, reselect a varistor or improve the withstand voltage of devices.
5) Surge current width (τ)
Given that the varistor absorbs all energies, the surge current width (τ) will be as follows.
τ =
E
Vi × lb
[S]
6) Examining surge life of varister
From the varistor characteristic diagram, the guaranteed current value (Ip) in which the number of
the surge application life is N at the surge current width (τ). Calculate the guaranteed current
value (Ip) ratio to brake current (Ib).
If an enough margin is ensured for Ip/Ib, the number of the surge application life N [time] can be
considered as favorable.
the surge application life is N at the surge current width (τ). Calculate the guaranteed current
value (Ip) ratio to brake current (Ib).
If an enough margin is ensured for Ip/Ib, the number of the surge application life N [time] can be
considered as favorable.