Mocomtech CDM-570L Manual Do Utilizador

Página de 452
CDM-570/570L Satellite Modem with Optional IP Module 
Revision 4 
Forward Error Correction Options 
MN/CDM570L.IOM 
 
 
It can be seen that the 8-PSK Rate 3/4 Turbo performance closely approaches that of the 
Rate 2/3 TCM/Reed-Solomon case – the BER performance is within approximately  
0.4 dB. However, it should be noted that the Rate 3/4 Turbo mode is 20% more 
bandwidth efficient
 than the TCM case. The additional advantages of Turbo (lower 
delay, performance during fades, etc.) should also be considered. 
 
 
Table 7-6.  Turbo Product Coding Summary 
FOR 
AGAINST 
Exceptionally good BER performance - significant improvement 
compared with every other FEC method in use today 
Nothing! 
No pronounced threshold effect - fails gracefully 
 
Exceptional bandwidth efficiency  
 
Coding gain independent of data rate (in this implementation) 
 
Low decoding delay 
 
Easy field upgrade in CDM-570/570L  
 
 
7.6 
Uncoded Operation (No FEC)  
There are occasions when a user may wish to operate a satellite link with no forward 
error correction of any kind. For this reason, the CDM-570/570L offers this uncoded 
mode for three modulation types - BPSK, QPSK, and OQPSK. However, the user should 
be aware of some of the implications of using this approach.  
 
PSK demodulators have two inherent undesirable features. The first of these is known as 
‘phase ambiguity’, and is due to the fact the demodulator does not have any absolute 
phase reference, and in the process of carrier recovery, the demodulator can lock up in 
any of K phase states, where K = 2 for BPSK, K = 4 for QPSK. Without the ability to 
resolve these ambiguous states there would be a 1-in-2 chance that the data at the output 
of the demodulator would be wrong, in the case of BPSK. For QPSK, the probability 
would be 3 in 4.  
 
The problem is solved in the case of BPSK by differentially encoding the data prior to 
transmission, and then performing the inverse decoding process. This is a very simple 
process, but has the disadvantage that it doubles the receive BER. For every bit error the 
demodulator produces, the differential decoder produces two. 
 
The problem for QPSK is more complex, as there are 4 possible lock states, leading to 4 
ambiguities. When FEC is employed, the lock state of the FEC decoder can be used to 
resolve two of the four ambiguities, and the remaining two can be resolved using serial 
differential encoding/decoding. However, when no FEC is being used, an entirely 
different scheme must be used. Therefore, in QPSK, a parallel differential 
encoding/decoding technique is used, but has the disadvantage that it again doubles the 
receive BER. 
7–8