Brocade Communications Systems 53-1001761-01 Benutzerhandbuch

Seite von 164
6
Converged Enhanced Ethernet Administrator’s Guide
53-1001761-01
Layer 2 Ethernet overview
1
DRAFT: BROCADE CONFIDENTIAL
Congestion control and queuing
The Brocade FCoE hardware supports several congestion control and queuing strategies. As an 
output queue approaches congestion, Random Early Detection (RED) is used to selectively and 
proactively drop frames to maintain maximum link utilization. Incoming frames are classified into 
priority queues based on the Layer 2 CoS setting of the incoming frame, or the possible rewriting of 
the Layer 2 CoS field based on the settings of the CEE port or VLAN. 
The Brocade FCoE hardware supports a combination of two scheduling strategies to queue frames 
to the egress ports; Priority queuing, which is also referred to as strict priority, and Deficit Weighted 
Round Robin (DWRR) queuing. 
The scheduling algorithms work on the eight traffic classes as specified in 802.1Qaz Enhanced 
Transmission Selection (ETS). 
Queuing features are described as follows:
RED—RED increases link utilization. When multiple inbound TCP traffic streams are switched 
to the same outbound port, and some traffic streams send small frames while other traffic 
streams send large frames, link utilization will not be able to reach 100 percent. When RED is 
enabled, link utilization approaches 100 percent.
Classification—Setting user priority. 
-
Inbound frames are tagged with the user priority set for the inbound port. The tag is visible 
when examining the frames on the outbound port. By default, all frames are tagged to 
priority zero.
-
Externally tagged Layer 2 frames—When the port is set to accept externally tagged Layer 2 
frames, the user priority is set to the Layer 2 CoS of the inbound frames.
Queuing
-
Input queuing—Input queuing optimizes the traffic flow in the following way. Suppose a 
CEE port has inbound traffic that is tagged with several priority values, and traffic from 
different priority settings is switched to different outbound ports. Some outbound ports 
are already congested with background traffic while others are uncongested. With input 
queuing, the traffic rate of the traffic streams switched to uncongested ports should 
remain high.
-
Output queuing—Output queuing optimizes the traffic flow in the following way. Suppose 
that several ports carry inbound traffic with different priority settings. Traffic from all ports 
is switched to the same outbound port. If the inbound ports have different traffic rates, 
some outbound priority groups will be congested while others can remain uncongested. 
With output queuing, the traffic rate of the traffic streams that are uncongested should 
remain high.
-
Multicast rate limit—A typical multicast rate limiting example is where several ports carry 
multicast inbound traffic that is tagged with several priority values. Traffic with different 
priority settings is switched to different outbound ports. The multicast rate limit is set so 
that the total multicast traffic rate on output ports is less than the specified set rate limit. 
-
Multicast input queuing—A typical multicast input queuing example is where several ports 
carry multicast inbound traffic that is tagged with several priority values. Traffic with 
different priority settings is switched to different outbound ports. Some outbound ports 
are already congested with background traffic while others are uncongested. The traffic 
rate of the traffic streams switched to the uncongested ports should remain high. All 
outbound ports should carry some multicast frames from all inbound ports. This enables 
multicast traffic distribution relative to the set threshold values.