Murata Electronics North America 910M Benutzerhandbuch

Seite von 47
WIT910 
the radio system and then query the maximum data length from one of the remotes in 
control mode to discover its exact setting.  Divide this number by the hop duration as 
above to get the remote's exact capacity. 
 
2.2.5.  Full Duplex Communication 
 
From an application perspective, the WIT910 communicates in full duplex.  That is, both 
the user application and the remote terminal can be transmitting data without waiting for 
the other to finish.  At the radio level, the base station and remotes do not actually 
transmit at the same time.  If they did, the transmissions would collide.  As discussed 
earlier, the base station transmits a synchronization signal at the beginning of each hop 
followed by a packet of data.  After the base station transmission, the remotes will 
transmit.  Each base station and remote transmission may be just part of a complete 
transmission from the user application or the remote terminal.  Thus, from an application 
perspective, the radios are communicating in full duplex mode since the base station will 
receive data from a remote before completing a transmission to the remote. 
 
 
2.2.6.  Error-free Packet Transmission Using ARQ 
 
The radio medium is a hostile environment for data transmission.  In a typical office or 
factory environment, 1% - 2% of the 900MHz frequency band may be unusable at any 
given time at any given station due to noise, interference or multipath fading.  For 
narrowband radio systems (and also many spread spectrum radio systems which use 
direct sequence spreading), this would imply a loss of contact on average of over 30 
seconds per hour per station.   The WIT910 overcomes this problem by hopping rapidly 
throughout the band in a pseudo-random pattern.  If a message fails to get through on a 
particular channel, the WIT910 simply tries again on the next channel.  Even if two thirds 
of the band are unusable, the WIT910 can still communicate reliably. 
 
Data input to the WIT910 is broken up by the radio into packets.  A 24-bit checksum is 
attached to each packet to verify that it was correctly received.  If the packet is received 
correctly, the receiving station sends an acknowledgment, or 
ACK
, back to the transmitting 
station.  If the transmitter doesn't receive an 
ACK
, at the next frequency hop it will attempt 
to send the packet again.  When ARQ is enabled, the transmitting radio will attempt to 
send a packet packet attempts limit times before discarding the packet.  A value of 
00H
 
disables ARQ.  When it is disabled, any transmission received with errors is discarded. It 
is the responsibility of the user application to track missing packets.  A second parameter, 
ARQ Mode, allows the choice between using ARQ to resend unsuccessful transmissions 
or always sending a transmission packet attempts limit times regardless of the success or 
failure of any given transmission. 
 
All of this error detection and correction is transparent to the user application.  All the 
user application sees is error-free data from the modem.  However, if the ARQ mode is 
disabled, transmissions with errors are discarded, and missing data detection will be the 
© 2000- 2004 Cirronet Inc 
M-0910-0000 Rev -