Acer Intel Celeron G460 KC.G0001.460 Benutzerhandbuch

Produktcode
KC.G0001.460
Seite von 102
Intel
®
 Celeron
®
 Processor on 0.13 Micron Process in the 478-Pin Package Datasheet
13
 Electrical Specifications
Electrical Specifications
2
2.1
System Bus and GTLREF
Most Celeron processor on 0.13 micron process system bus signals use Assisted Gunning 
Transceiver Logic (AGTL+) signalling technology. As with the P6 family of microprocessors, this 
signalling technology provides improved noise margins and reduced ringing through low voltage 
swings and controlled edge rates. Like the Intel
£
 Pentium
£
 
4 processor, the termination voltage 
level for the Celeron processor on 0.13 micron process AGTL+ signals is VCC, which is the 
operating voltage of the processor core. The use of a termination voltage that is determined by the 
processor core allows better voltage scaling on the system bus for Celeron processor on 
0.13 micron process. Because of the speed improvements to data and address bus, signal integrity 
and platform design methods have become more critical than with previous processor families. 
Design guidelines for the Celeron processor on 0.13 micron process system bus are described in the 
appropriate Platform Design Guide (refer to 
). 
The AGTL+ inputs require a reference voltage (GTLREF) that is used by the receivers to determine 
whether a signal is a logical 0 or a logical 1. GTLREF must be generated on the system board. 
Termination resistors are provided on the processor silicon, and are terminated to the processor 
core voltage (VCC). Intel chipsets also provide on-die termination, thus eliminating the need to 
terminate most AGTL+ signals on the system board.
Some AGTL+ signals do not include on-die termination and must be terminated on the system 
board. See 
 for details regarding these signals.
The AGTL+ bus depends on incident wave switching. Therefore, timing calculations for AGTL+ 
signals are based on flight time as opposed to capacitive deratings. Analog signal simulation of the 
system bus, including trace lengths, is highly recommended when designing a system.
2.2
Power and Ground Pins
For clean on-chip power distribution, the Celeron processor on 0.13 micron process has 85 VCC 
(power) and 181 VSS (ground) inputs. All power pins must be connected to VCC, and all VSS pins 
must be connected to a system ground plane.The processor VCC pins must be supplied with the 
voltage defined by the VID (Voltage ID) pins and the loadline specifications (see 
2.3
Decoupling Guidelines
Because of the large number of transistors and high internal clock speeds, the processor is capable 
of generating large average current swings between low and full power states. This may cause 
voltages on power planes to sag below their minimum values if bulk decoupling is not adequate. 
Care must be taken in the board design to ensure that the voltage provided to the processor remains 
within the specifications listed in 
. Failure to do so can result in timing violations and/or 
affect the long term reliability of the processor. For further information and design guidelines, refer 
to 
 for the appropriate Platform Design Guide, and the Intel
£
 Pentium
£
 4 Processor 
VR-Down Design Guidelines.