Hameg HM8112-3 Digital-Multimeter, DMM, 1 200 000 Counts 25-8112-0302 Datenbogen

Produktcode
25-8112-0302
Seite von 64
45
Subject to change without notice
4  Dc measurements 
4.1  input resistance for dc measurements
In order to profit from the high linearity of the conversion me-
thod, the input resistance is extremely high for input voltages 
up to 1 V (> 1 GΩ). In this range, the instrument still allows pre-
cise measurements with a maximum of 1 ppm load error with 
measuring objects with an internal resistance of 1 kΩ. 
 
in the ranges 10 V, 100 V, 1000 V an internal resi-
stance of 100 Ω, with 100,000  digits resolution, will 
already cause an error of one digit. 
The values of the input resistance and the maximum number of 
available digits in the various ranges are given in the following 
table; the maximum number of digits is valid with an integration 
time of 1 or 10s.
 
Maximum Maximum 
 
number of  
input 
 Maximum 
Range 
digits 
resistance 
 resolution
  100 mV 
1 200 000 
  1 GΩ 
 100 nV 
    1 V 
1 200 000 
  1 GΩ 
   1 µV 
    10 V 
1 200 000 
10 MΩ 
   10 µV 
  100 V    
1 200 000 
10 MΩ 
 100 µV 
  600 V   
1
 600 000 
10 MΩ 
   1 mV
The influence of the source resistance is shown in the following 
figure.
The error in % of a measurement comes about as follows:
 example: 
 r
i
 ≥1 GΩ; R
s
 = 10 kΩ,  
measurement error = 0,001% (10 ppm)
the often used unit ppm for errors can be calcula-
ted: error in (%) x 10,000.
4.2  series mode rejection
One of the main advantages of an integrating measuring me-
thod is the high series mode rejection of ac components (e.g. 
interference from the line) which are superimposed on the 
signal voltage. For frequencies for which the integration time 
is a multiple of their period theoretically an infinite suppression 
is achieved. Due to the integration the positive and negative 
portions of the hum from the line will cancel. The interference 
from the line thus can be almost completely eliminated. The 
Multifunctionmeter HM8112-3 achieves a series mode rejection 
of > 100 dB for 50/60 Hz ± 5 %.
4.3  common mode rejection 
Common mode rejection is the ability of a measuring instrument 
to only display the desired difference signal between the „HI“ and 
„LO“ input terminals while suppressing any signals referenced 
to to ground common to both input terminals as far as possible. 
In an ideal system there would be no error; in practice stray 
capacitances, isolation resistances and ohmic unsymmetries 
convert part the common mode signal to series mode. 
4.4  thermal voltages 
One of the most frequent causes of dc measurement errors 
at low levels are thermoelectric voltages. They are generated 
at the contact junctions between two different metals which 
are at the same temperature or differring temperatures. The 
drawing shows the various points in a measurement circuit 
which are possible sources of thermoelectric voltages; those 
may be at an external contact junction (contact 1/2) but also 
within the terminals of the measuring instrument. Hence it is 
necessary to make sure that junctions are either made of the 
same material or at least to use materials which generate only 
very small thermoelectric voltages when brought in contact. 
The table below shows the different thermoelectric voltages für 
diverse material combinations.
contact materials  thermoelectric voltage (appr.)
Cu - Cu 
<0,3 µV/°C 
Cu - Ag (Silver) 
0,4 µV/°C 
Cu - Au (Gold) 
0,4 µV/°C 
Cu - Sn (Tin) 
2-4 µV/°C; depending on the composition 
 
if, e.g. the material no. 1 is a silver conductor and 
the material no. 2 a copper cable, a temperature 
difference of only 1 degree will generate already a 
thermoelectric voltage of 400 nV. this would cause 
a ±40 digit error in the smallest range and 7½ 
digits resolution  (10 nV sensitivity). For 6½ digits 
of resolution the error would thus amount to ± 4 
digits. With the Hm8112-3, 6½ digits resolution , 
the influence of this level of thermoelectric voltage 
would affect the last digit.
DMM
R
s
V
V
s
R
i
V
m
R
i
=  Max. Input resistance of the DMM
(10 MΩ oder >1 GΩ)
R
s
=  Source resistance of the measurement object
V
s
=  Voltage of the measurement object
contact 1
at T1
contact 2
at T2
contact 3
(HI connector)
contact 4
(LO connector)
Material 1
Material 2
Material 2
Material 1
DMM
V
m
V
V
s
HINT
HINT
HINT
m e a s u r e m e n t  P r i n c i p l e s  a n d  B a s i c s          
          D c  m e a s u r e m e n t s
 
100  x  R
s
Error (%)   =  ——————
 R
s
  +  R
i