Ramsey Electronics DN1 User Manual

Page of 24
DN1 
• 5  
oxidation reduction or “redox" chemical reaction in the cell, we effectively 
decrease the chemically active surface area inside the cell. The lower this 
surface area, the shorter the battery’s life. Since you don’t try to recharge 
conventional batteries, you’ve never noticed this property until you started to 
use rechargeable NiCad batteries. 
 
To keep your cells working like new and to eliminate this memory effect, we’ve 
built in an automatic discharge circuit that will properly discharge the cells 
before their recharging. 
 
So, you can see recharging a NiCad battery correctly can be a tricky business. 
How can we charge the battery to its full potential, but not too much? The 
answer is to watch the 
∆V or change in voltage over time. As shown in the 
graph, the battery voltage continues to rise while charging but drops slightly 
when the cell is completely charged. By recognizing this point on the graph, a 
charger can put just enough charge into the cell. By virtue of this voltage -vs- 
time checking, it is also possible to charge the battery at a much higher 
charging current - and significantly reduce the battery charging time. Once this 
point is reached, it is best to “top off” the battery with a charge burst every now 
and then. 
 
Enter the Benchmarq BQ2003 NiCad battery charger IC. This cell monitoring / 
charging IC performs all of the previously mentioned functions, and then some. 
This smart IC is the “doctor” in our NiCad recharging unit. 
  
TIME
VO
LT
AG
E
Positive "Slope"
   or  + dV 
Negative "Slope"
 or  - dV
Terminal Voltage 
            vs
          Time 
for a NiCad Cell          
Full Charge
Slope = Zero
 dT
 dT