Intel L3426 BV80605004737AA Data Sheet

Product codes
BV80605004737AA
Page of 102
Dual-Core Intel® Xeon® Processor 3000 Series Datasheet
81
Thermal Specifications and Design Considerations
With a properly designed and characterized thermal solution, it is anticipated that the 
TCC would only be activated for very short periods of time when running the most 
power intensive applications. The processor performance impact due to these brief 
periods of TCC activation is expected to be so minor that it would be immeasurable. An 
under-designed thermal solution that is not able to prevent excessive activation of the 
TCC in the anticipated ambient environment may cause a noticeable performance loss, 
and in some cases may result in a T
C
 that exceeds the specified maximum temperature 
and may affect the long-term reliability of the processor. In addition, a thermal solution 
that is significantly under-designed may not be capable of cooling the processor even 
when the TCC is active continuously. Refer to the Dual-Core Intel
®
 Xeon
®
 Processor 
3000 Series Thermal Design Guidelines for information on designing a thermal solution.
The duty cycle for the TCC, when activated by the Thermal Monitor, is factory 
configured and cannot be modified. The Thermal Monitor does not require any 
additional hardware, software drivers, or interrupt handling routines.
5.2.2
Thermal Monitor 2
The processor also supports an additional power reduction capability known as Thermal 
Monitor 2. This mechanism provides an efficient means for limiting the processor 
temperature by reducing the power consumption within the processor. 
When Thermal Monitor 2 is enabled, and a high temperature situation is detected, the 
Thermal Control Circuit (TCC) will be activated. The TCC causes the processor to adjust 
its operating frequency (via the bus multiplier) and input voltage (via the VID signals). 
This combination of reduced frequency and VID results in a reduction to the processor 
power consumption.
A processor enabled for Thermal Monitor 2 includes two operating points, each 
consisting of a specific operating frequency and voltage. The first operating point 
represents the normal operating condition for the processor. Under this condition, the 
core-frequency-to-FSB multiple used by the processor is that contained in the 
appropriate MSR and the VID is that specified in 
. These parameters represent 
normal system operation.
The second operating point consists of both a lower operating frequency and voltage. 
When the TCC is activated, the processor automatically transitions to the new 
frequency. This transition occurs very rapidly (on the order of 5 μs). During the 
frequency transition, the processor is unable to service any bus requests, and 
consequently, all bus traffic is blocked. Edge-triggered interrupts will be latched and 
kept pending until the processor resumes operation at the new frequency.
Once the new operating frequency is engaged, the processor will transition to the new 
core operating voltage by issuing a new VID code to the voltage regulator. The voltage 
regulator must support dynamic VID steps to support Thermal Monitor 2. During the 
voltage change, it will be necessary to transition through multiple VID codes to reach 
the target operating voltage. Each step will likely be one VID table entry (see 
). The processor continues to execute instructions during the voltage 
transition. Operation at the lower voltage reduces the power consumption of the 
processor.
A small amount of hysteresis has been included to prevent rapid active/inactive 
transitions of the TCC when the processor temperature is near its maximum operating 
temperature. Once the temperature has dropped below the maximum operating 
temperature, and the hysteresis timer has expired, the operating frequency and