Fairchild CAM CCD-2KLV.TDI User Manual

Page of 38
PRELIMINARY 
REFERENCE B 
 
 
Introduction to LVDS 
 
National Semiconductor first introduced LVDS as a standard in 1994.  National recognized 
that the demand for bandwidth was increasing at an exponential rate while users also 
desired low power dissipation.  This exceeded the speed capabilities of RS-422 and RS-
485 differential transmission standards.  While Emitter Coupled Logic (ECL or PECL) was 
available at the time, it is incompatible with standard logic levels, uses negative power rails, 
and leads to high chip-power dissipation.  These factors limited its wide spread acceptance. 
 
LVDS is differential, using two signal lines to convey information.  While sounding like a 
penalty, this is actually a benefit.  The cost is two traces (or conductors) to convey a signal, 
but the gain is noise tolerance in the form of common-mode rejection. 
 
Signal swing can be dropped to only a few hundred millivolts because the signal-to-noise 
rejection has been improved.  The small swing enables faster data rates since the rise time 
is now so much shorter. 
 
Getting Speed with Low Noise and Low Power 
LVDS is a low swing, differential signaling technology, which allows single channel data 
transmission at hundreds or even thousands of Megabits per second (Mbps).  Its low swing 
and current-mode driver outputs create low noise and provide very low power consumption 
across a wide range of frequencies. 
 
 
 
How LVDS Works 
LVDS outputs consist of a current source (nominal 3.5 mA) that drives the differential pair 
lines.  The basic receiver has a high DC input impedance so the majority of driver current 
flows across the 100
Ω termination resistor generating about 350 mV across the receiver 
inputs.  When the driver switches, it changes the direction of current flow across the 
resistor, thereby creating a valid “one” or “zero” logic state. 
 
Fairchild Imaging • CAM/CCD-2KLV.TDI & CAM/CCD-4KLV.TDI Line Scan Camera User’s  Manual • Rev 073004 • 37 of 38