Nxp Semiconductors PCA2125 User Manual

Page of 52
 
 
NXP Semiconductors 
UM10301
 
User Manual PCF85x3, PCA8565 and PCF2123, PCA2125
UM10301_1 
© NXP B.V. 2008. All rights reserved.
User manual 
Rev. 01 — 23 December 2008 
15 of 52
6.1 Oscillation 
allowance 
Fig 4 shows the Pierce oscillator schematic with the external crystal. For an oscillation to 
take place the real component of the oscillator impedance has to be larger than the 
motional resistance R
1
 (sometimes called R
S
 or ESR). If R
1
 is too large no oscillation will 
take place since no operating point can be reached. 
Similarly, if the supply voltage is too low or the temperature is too low, no oscillation can 
build up. 
A method to test how much margin the design has is to include a resistor R
X
 in series 
with the crystal. The value of the resistor is changed (a trimmer is useful here) to see at 
which values of R
X
 oscillation starts and stops. Starting from a large value of R
X
 the 
resistance is lowered until oscillation starts. This value of R
X
 is called R
X-start
. Now the 
value is increased again until oscillation stops, R
X
 is called R
X-stop
The oscillation allowance OA is defined as: 
 
  OA = R
X-start
 + R
1
 
 
As a rule of thumb, the motional resistance of the crystal chosen should be 
 
 
5
1
OA
R
 
 
This test can be done in the lab under room temperature. This should give enough safety 
margins to allow for production spread of IC and crystal and to deal with the increasing 
value of R
1
 under influence of increased temperature. 
 
6.2  Using an external oscillator 
It is possible to supply a clock signal from an external oscillator instead of using the 
internal oscillator if for some reason it is desired to not use the internal oscillator. In this 
case no crystal will be connected to the OSCI and OSCO pins. Instead the external 
oscillator must be connected to OSCI while OSCO must be left floating. 
The signal may swing from V
SS
 to V
DD
. However, with a crystal attached the signal 
amplitude at the oscillator input pin would be about 500 mV, swinging around a 250 mV 
bias i.e. never going negative (not for PCF8583 and PCF8593, see below). For the 
PCF85x3 supplying a signal with amplitude between 500 mV and 1000 mV is a good 
starting point, with the bias such that the signal doesn’t go negative and operates in the 
same region as would have been the case with a crystal. Square or sine wave is both ok. 
For the PCF2123 the amplitude should be somewhat smaller. If the oscillator amplitude 
is larger than the supply voltage to the RTC it is advisable to use a resistive divider for 
the oscillator signal to bring its amplitude within the supply voltage of the RTC. Without 
such a divider it will work too and nothing will be damaged (as long as the currents via 
the clamping diodes don’t exceed the maximum limits) because the device has internal 
clamping diodes from V
SS
 to OSCI and from OSCI to V
DD
 (not on PCF2123). However, 
performance will be better if the oscillator amplitude is brought within the range from 0 V 
to the actual V
DD
 used for the RTC. This will first prevent periodic currents flowing via the 
upper clamping diode to the decoupling capacitor on the supply pin. Secondly the signal