Cisco Cisco Prime Virtual Network Analysis Module (vNAM) 6.3 White Paper

Page of 64
 
3-15
Cisco Virtualized Multiservice Data Center (VMDC) Virtual Services Architecture (VSA) 1.0
Design Guide
Chapter 3      VMDC VSA 1.0 Design Details
  Network
communicate reachability from and to the PE routers. In this model, WAN edge/PE routers effectively 
function as an L3 autonomous system boundary router (ASBR) and MPLS VPN gateway, extending the 
tenant virtual private cloud container in the public provider Data Center to their IP VPN.
The CSR1000V and ASA1000V are default gateways for all Hosts and routable virtual service 
appliances within the tenant containers. The ASR 9000 WAN/PE is the gateway to the Internet and 
private customer networks, for all devices in the data center. For the ASA 1000V in the Zinc container, 
the ASR9000 is the default gateway to the Internet, via static routing. For the CSR1000V in 
Silver/Bronze/Gold containers the ASR9000 is the gateway to the customer networks, which the 
ASR9000 advertises to the CSR1000v via eBGP. The ASR9000 can inject specific prefixes via BGP to 
the CSR for more granular control of tenant routing. For the CSR1000V in a Gold container with Internet 
access, the ASR9000 is the Internet gateway, and advertises a default route to the CSR1000V via eBGP 
on the Internet-facing link. The CSR does not have to learn all Internet routes, but can simply route 
traffic destined to the Internet toward the default route. Tenant-to-tenant communication may be enabled 
through leaking of VRF routes at the centralized PE.
Alternative L3 logical models for addressing tenancy scale not addressed in this system release include 
but are not limited to: 1) implementing MPLS Inter-AS Option B at the aggregation switching nodes, 
functioning as intra-DC PEs in a traditional hierarchical DC design, and 2) a distributed Virtual PE (vPE) 
model, described in 
.
It is important to note that the vCE and vPE models are not necessarily mutually exclusive – it is possible 
that a Provider might run both models concurrently within a Public Data Center, to meet the differing 
needs of their customers. A practical use case which might lead a Provider to implement a vPE model 
over a vCE model is one in which the customer or “tenant” requires sub-tenancy – for example, the 
customer might be an ISV (Independent Software Vendor), and wish to use their slice of the Public Cloud 
to provide granular, differentiated services to their customers. Other practical deployment considerations 
include operational consistency and ease of use. 
Fabric Path
Cisco FabricPath comprises an L2 data plane alternative to classical Ethernet. FabricPath encapsulates 
frames entering the fabric with a header that consists of routable source and destination addresses. These 
addresses are the address of the switch on which the frame was received and the address of the destination 
switch toward which the frame is heading. For this reason, switch IDs must be unique in the FabricPath 
domain; the IDs are either automatically assigned (default) or set manually by the administrator 
(recommended). The frame is routed until it reaches the remote switch, where it is de-encapsulated and 
delivered in its original Ethernet format.
FabricPath uses an IS-IS control plane to establish L2 adjacencies in the FabricPath core; so equal-cost 
multipath (ECMP) is supported and Spanning Tree Protocol (STP) is no longer required for loop 
avoidance in this type of L2 fabric. Loop mitigation is addressed using time to live (TTL), decremented 
at each switch hop to prevent looping and reverse path forwarding (RPF) checks for multi-destination 
traffic. As previously noted, a common initial use case for FabricPath is as part of a strategy to minimize 
reliance on STP in the Data Center.
A FabricPath domain comprises one logical topology. As part of establishing L2 adjacencies across the 
logical topology, FabricPath nodes create two multi-destination trees. IS-IS calculations compute the 
trees automatically. The highest priority switch is chosen as the root for the first multi-destination tree 
(FTAG1), which is used for broadcasts, flooding, and multicast. The second highest priority switch is 
chosen as the root for the second multi-destination tree (FTAG2), which is used for multicast. The 
designs described in this guide leverage the current best practice recommendation for root selection, 
which is to manually define the roots for the FTAG trees. In this case, the logical choice is to set the 
roots as the spine nodes, as they have the most direct connectivity across the span of leaf nodes. In the