Magellan mrm 360 User Manual

Page of 95
Information
1
About Satellite Navigation 
Global satellite navigation is an exciting technology, providing enhanced productivity and accuracy in a vast number 
of industries. It adds a new level of enjoyment and safety to a wide range of navigation, sports, and recreational 
activities. 
A Global Navigation Satellite System (GNSS) is a network of satellites that transmit high-frequency radio signals 
containing time and distance data that can be picked up by a receiver, allowing users to pinpoint their precise 
locations anywhere around the globe. 
There are two Global Navigation Satellite Systems in operation: the U.S. Global Positioning System (GPS) and the 
Russian GLObal NAvigation Satellite System (GLONASS). These systems are constantly being upgraded to meet 
higher standards of reliability. A third GNSS named GALILEO, after the Italian astronomer of the early 1600s, is 
being developed in Europe specifically to provide a higher standard of integrity and reliability, required to ensure the 
safety of lives during transport by air, land and sea, without the use of additional augmentation systems. 
While the GPS and GLONASS satellite networks are being developed to achieve maximum performance, Satellite-
Based Augmentation Systems (SBAS) have been established to provide improved accuracy. SBAS provides 
differential signal corrections for GPS and GLONASS transmissions with the use of ground stations and 
geostationary satellites in specific regions. This is GNSS-1, the first phase in establishing the required integrity for 
high-precision satellite navigation. 
GNSS-2 requires the launching of new satellites into orbit and a complete upgrade of the existing satellite systems. 
This second phase is already well underway. GALILEO, scheduled to begin service in 2008, is being developed to 
meet the standards of GNSS-2 for rapid and reliable, certified precision positioning. 
How Satellite Navigation Works 
Global navigation satellites continuously transmit time and distance information as they orbit the earth in a precise 
formation. Navigation satellite receivers use this information to calculate an exact location through triangulation. 
Every point on Earth is identified by two sets of numbers called coordinates. These coordinates represent the exact 
point where a horizontal line, known as latitude, crosses a vertical line, known as longitude. The receiver locks on to 
at least three satellites and uses the information received to determine the coordinates of the receiving device. 
By comparing the time the signals were transmitted from the satellites and the time they were recorded, the receiver 
calculates how far away each satellite is. The distance of the receiver from three or more satellites reveals its 
position on the surface of the planet. With these distance measurements, the receiver might also calculate speed, 
bearing, trip time, distance to destination, altitude, and more. 
The satellite-navigation device may display its position as longitude/latitude, Universal Transverse Mercator (UTM), 
Military Grid (MG), or simply as a point on an electronic map. Many Thales Navigation receivers provide 
comprehensive mapping data, making satellite navigation an easy tool to enhance your recreational and industrial 
activities. 
Line of Sight
Satellite-navigation receivers operate by line of sight with global-positioning satellites. This means that at least three 
satellites must be in “view” of a receiver in order to calculate longitude and latitude. A fourth satellite must also be 
within line of sight to calculate altitude. On average, eight satellites are continuously within line of sight of every 
position on Earth; the more satellites in view, the more accurate the positioning. 
Though the radio signals of navigation satellites will pass through clouds, glass, plastic, and other lightweight 
materials, satellite-navigation receivers will not work underground or in other enclosed spaces. 
Precision
On average, a satellite-navigation receiver is accurate to within 15 meters. Thales Navigation employs several 
technologies to increase the accuracy of their professional and Magellan®-branded receivers. An accuracy of 3 
meters or better is achieved using correction signals from satellite navigation-augmentation systems. In the U.S., an 
accuracy of 3 meters is achieved using signal corrections from a network of ground stations and fixed-position 
satellites known as WAAS (Wide-Area Augmentation System). Throughout Europe a similar system, EGNOS 
(European Geostationary Navigation Overlay System), provides the same accuracy. In Asia, satellite navigation-signal 
correction is provided by MSAS (Multifunctional Transport Satellite-based Augmentation System). Other ways to 
Information