Microchip Technology MCP3422EV Data Sheet

Page of 58
© 2009 Microchip Technology Inc.
DS22088C-page 31
MCP3422/3/4
6.0
BASIC APPLICATION 
CONFIGURATION
The MCP3422/3/4 devices can be used for various
precision analog-to-digital converter applications.
These devices operate with very simple connections to
the application circuit. The following sections discuss
the examples of the device connections and
applications.
6.1
Connecting to the Application 
Circuits
6.1.1
BYPASS CAPACITORS ON V
DD
 PIN
For an accurate measurement, the application circuit
needs a clean supply voltage and must block any noise
signal to the MCP3422/3/4 devices. 
 shows
an example of using two bypass capacitors (a 10 µF
tantalum capacitor and a 0.1 µF ceramic capacitor) on
the V
DD
 line of the MCP3424. These capacitors are
helpful to filter out any high frequency noises on the
V
DD
 line and also provide the momentary bursts of
extra currents when the device needs from the supply.
These capacitors should be placed as close to the V
DD
pin as possible (within one inch). If the application
circuit has separate digital and analog power supplies,
the V
DD
 and V
SS
 of the MCP3422/3/4 devices should
reside on the analog plane.
6.1.2
CONNECTING TO I
2
C BUS USING 
PULL-UP RESISTORS
The SCL and SDA pins of the MCP3422/3/4 are open-
drain configurations. These pins require a pull-up
resistor as shown in 
. The value of these
pull-up resistors depends on the operating speed
(standard, fast, and high speed) and loading
capacitance of the I
2
C bus line. Higher value of pull-up
resistor consumes less power, but increases the signal
transition time (higher RC time constant) on the bus.
Therefore, it can limit the bus operating speed. The
lower value of resistor, on the other hand, consumes
higher power, but allows higher operating speed. If the
bus line has higher capacitance due to long bus line or
high number of devices connected to the bus, a smaller
pull-up resistor is needed to compensate the long RC
time constant. The pull-up resistor is typically chosen
between 5 k
Ω and 10 kΩ ranges for standard and fast
modes, and less than 1 k
Ω for high speed mode
depending on the presence of bus loading capacitance.
6.1.3
I
2
C ADDRESS SELECTION PINS 
(
MCP3423
 AND 
MCP3424
)
The user can tie the Adr0 and Adr1 pins to V
SS
, V
DD
,
 
FIGURE 6-1:
Typical Connection.
 shows an example of multiple device
connections. The I
2
C bus loading capacitance
increases as the number of device connected to the I
2
C
bus line increases. The bus loading capacitance affects
on the bus operating speed. For example, the highest
bus operating speed for the 400 pF bus capacitance is
1.7 MHz, and 3.4 MHz for 100 pF. Therefore, the user
needs to consider the relationship between the
maximum operation speed versus. the number of I
2
C
devices that are connected to the I
2
C bus line.
 
FIGURE 6-2:
Example of Multiple Device 
Connection on I
2
C Bus.
R
P
V
DD
4
5
6
9
CH2-
 V
SS
CH3+
Adr1
Adr0
3
12
CH2+
CH3-
2
13
CH1-
CH4+
1
14
CH1+
CH4-
7
8
 SDA
SCL
 V
DD
11
10
C
1
C
2
Input 
Input 
Signal 2
Signal 1
Input 
Input 
Signal 4
Signal 3
T
O
 MCU
(MASTER)
R
P
I
2
C Address
Selection 
Pins
Rp is the pull-up resistor:
5 k
Ω - 10 kΩ for f
SCL
=
100 kHz to 400 kHz
~700
Ω for f
SCL
=
3.45 MHz
C1: 0.1 µF, Ceramic capacitor
C2: 10 µF, Tantalum capacitor
MCP3424
SDA SCL
Microcontroller
(PIC16F876)
MCP4725
MCP3422
MCP3423
MCP3424