Microchip Technology ARD00342 Data Sheet

Page of 62
MCP3901
DS22192D-page 22
© 2011 Microchip Technology Inc.
4.13
MCP3901 Delta-Sigma 
Architecture
The MCP3901 incorporates two Delta-Sigma ADCs
with a multi-bit architecture. A Delta-Sigma ADC is an
oversampling converter that incorporates a built-in
modulator, which is digitizing the quantity of charge
integrated by the modulator loop (see 
). The
quantizer is the block that is performing the
Analog-to-Digital conversion. The quantizer is typically
1 bit, or a simple comparator which helps to maintain
the linearity performance of the ADC (the DAC
structure, is in this case, inherently linear).
Multi-bit quantizers help to lower the quantization error
(the error fed back in the loop can be very large with
1-bit quantizers) without changing the order of the
modulator or the OSR, which leads to better SNR
figures. Typically, however, the linearity of such
architectures is more difficult to achieve, since the DAC
is no more simple to realize, and its linearity limits the
THD of such ADCs.
The MCP3901’s 5-level quantizer is a Flash ADC,
composed of 4 comparators arranged with equally
spaced thresholds and a thermometer coding. The
MCP3901 also includes proprietary 5-level DAC
architecture that is inherently linear for improved THD
figures.
4.14
Idle Tones
A Delta-Sigma Converter is an integrating converter. It
also has a finite quantization step (LSB) which can be
detected by its quantizer. A DC input voltage that is
below the quantization step should only provide an all
zeros result, since the input is not large enough to be
detected. As an integrating device, any Delta-Sigma
will show, in this case, Idle tones. This means that the
output will have spurs in the frequency content that are
depending on the ratio between quantization step
voltage and the input voltage. These spurs are the
result of the integrated sub-quantization step inputs
that will eventually cross the quantization steps after a
long enough integration. This will induce an AC
frequency at the output of the ADC and can be shown
in the ADC output spectrum.
These Idle tones are residues that are inherent to the
quantization process and the fact that the converter is
integrating at all times without being reset. They are
residues of the finite resolution of the conversion
process. They are very difficult to attenuate and they are
heavily signal dependent. They can degrade both the
SFDR and THD of the converter, even for DC inputs.
They can be localized in the baseband of the converter,
and thus, difficult to filter from the actual input signal. 
For power metering applications, Idle tones can be very
disturbing because energy can be detected even at the
50 or 60 Hz frequency, depending on the DC offset of
the ADCs, while no power is really present at the
inputs. The only practical way to suppress or attenuate
the Idle tones phenomenon is to apply dithering to the
ADC. The Idle tone amplitudes are a function of the
order of the modulator, the OSR and the number of
levels in the quantizer of the modulator. A higher order,
a higher OSR or a higher number of levels for the
quantizer will attenuate the Idle tones amplitude.
4.15
Dithering
In order to suppress or attenuate the Idle tones present
in any Delta-Sigma ADCs, dithering can be applied to
the ADC. Dithering is the process of adding an error to
the ADC feedback loop in order to “decorrelate” the
outputs and “break” the Idle tones behavior. Usually, a
random or pseudo-random generator adds an analog
or digital error to the feedback loop of the Delta-Sigma
ADC in order to ensure that no tonal behavior can
happen at its outputs. This error is filtered by the
feedback loop, and typically, has a zero average value
so that the converter static transfer function is not
disturbed by the dithering process. However, the
dithering process slightly increases the noise floor (it
adds noise to the part) while reducing its tonal behavior,
and thus, improving SFDR and THD (see 
an
). The dithering process scrambles the
Idle tones into baseband white noise and ensures that
dynamic specs (SNR, SINAD, THD, SFDR) are less
signal dependent. The MCP3901 incorporates a
proprietary dithering algorithm on both ADCs in order to
remove Idle tones and improve THD, which is crucial
for power metering applications.