Microchip Technology APGRD004 Data Sheet

Page of 20
www.microchip.com/lighting 
LED Lighting Solutions Design Guide
         
17 
   
LED Lighting Solutions
Logic Output Temperature Sensors
Low cost temperature 
sensing devices such 
as the TC6501 and 
TC6502 (offered in 
SOT-23 packages) can be 
conveniently placed near 
power LED(s) to obtain a 
more accurate temperature 
monitoring and provide a 
logic output fault signal.
The fault signal will be activated as soon as a factory-
programmed temperature threshold is reached. Temperature 
threshold values can be selected in increments of 20°C as 
indicated in the following table.
TC6501/TC6502 Logic Output Temperature Sensors
Device
Temperature
Threshold (°C) 
TC6501P045VCT
45
TC6501P065VCT
65
TC6501P075VCT
75
TC6501P095VCT
95
TC6501P0105VCT
105
TC6501P0115VCT
115
TC6501P0120VCT
120
TC6501P0125VCT
125
Resistor-Programmable Temperature Switches
The MCP9509/10 devices are programmable logic output 
temperature switches. The temperature switch threshold can 
be programmed with a single external resistor, which provides 
high design flexibility and simplicity. In addition, this family 
of devices provide user programmable features such as 2°C 
and 10°C (typical) switch hysteresis and output structure 
configuration. The MCP9509 provides an open drain output, 
whereas the MCP9510 is offered in three different user 
selectable output configurations: Active-low/Active-high 
push pull and Active-Low Open-Drain output with an internal 
100 kΩ pull-up resistor.
The MCP9509/10 operate from 2.7V to 5.5V. This family is 
capable of triggering for temperatures -40°C to +125°C with 
high accuracy.
MCP9509/10 Resistor-Programmable
Temperature Switches
Device
Temperature Threshold (°C) 
MCP9509CT-E/OT
-40ºC to +125ºC (Falling Hot to Cold)
MCP9509HT-E/OT
-40ºC to +125ºC (Rising Cold to Hot)
MCP9510CT-E/CH
-40ºC to +125ºC (Falling Hot to Cold)
MCP9510HT-E/CH
-40ºC to +125ºC (Rising Cold to Hot)
T
OVER
T
OVER
TC6501
TC6502
GND
V
CC
HYST
GND
TC6501
TC6502
Temperature Sensing Solutions for
Power LED Applications
Every light source has a specific energy efficiency. A certain 
portion of the energy supplied to it is wasted in the form of 
heat. One of the fundamental differences between Power 
LED technology and other traditional sources of light is in 
the way this heat is transferred. In fact, LEDs are particularly 
good at producing a radiation with very narrow range of 
frequencies typically designed to produce a specific color 
in the visible spectrum. There is very little infrared (heat) 
radiation produced. All the heat produced by the light 
source has to be transferred instead by contact. Packaging 
technology plays an important role in facilitating the heat 
transfer from the LED, but an accurate thermal analysis 
of the entire lighting application (total thermal resistance 
from junction to ambient) is required to guarantee that 
the maximum temperature of the junction is not exceeded 
during operation. In particular, white LEDs employ phosphor 
materials to convert the monochromatic light emitted into a 
wider spectrum, to produce a “white” color. The phosphors 
are even more sensitive to temperature and can be easily 
damaged if overheated.
Before the LED junction reaches the maximum operating 
junction temperature (typically 125°C) the temperature 
increase will have negative impact on a number of LED 
characteristics including efficiency, light intensity, lifetime 
and color.
While the safe way to design a power LED application is to 
provide a low temperature resistance path to a heat sink 
that is dimensioned for the worst possible environmental 
and usage conditions, this might not always be possible 
for physical or cost constraints. For this reason driver 
ICs used in LED applications (such as the MCP1630 and 
MCP1650) often incorporate an over-temperature protection, 
performing what is substantially a device shutdown when 
the temperature rises above a given threshold. While this is 
effective to protect the device from reaching temperatures 
that could damage the LED (or the phosphor layer for white 
LED applications), the driver IC is not always guaranteed 
to be placed close to the emitting device(s). If the LEDs 
are arranged in modules, separate from the driving circuit, 
comprising several emitters connected in series or parallel, 
the temperature sensed by the driver could be considerably 
different from the actual module emitter’s junctions.