Microchip Technology DM183021 Data Sheet

Page of 392
PIC18F2331/2431/4331/4431
DS39616D-page 26
 
 2010 Microchip Technology Inc.
2.2
Power Supply Pins
2.2.1
DECOUPLING CAPACITORS
The use of decoupling capacitors on every pair of
power supply pins, such as V
DD
, V
SS
, AV
DD
 and
AV
SS
, is required. 
Consider the following criteria when using decoupling
capacitors:
• Value and type of capacitor: A 0.1 
F (100 nF), 
10-20V capacitor is recommended. The capacitor 
should be a low-ESR device, with a resonance 
frequency in the range of 200 MHz and higher. 
Ceramic capacitors are recommended.
• Placement on the printed circuit board: The 
decoupling capacitors should be placed as close 
to the pins as possible. It is recommended to 
place the capacitors on the same side of the 
board as the device. If space is constricted, the 
capacitor can be placed on another layer on the 
PCB using a via; however, ensure that the trace 
length from the pin to the capacitor is no greater 
than 0.25 inch (6 mm).
• Handling high-frequency noise: If the board is 
experiencing high-frequency noise (upward of 
tens of MHz), add a second ceramic type capaci-
tor in parallel to the above described decoupling 
capacitor. The value of the second capacitor can 
be in the range of 0.01
F to 0.001 F. Place this 
second capacitor next to each primary decoupling 
capacitor. In high-speed circuit designs, consider 
implementing a decade pair of capacitances as 
close to the power and ground pins as possible 
(e.g., 0.1
F in parallel with 0.001 F).
• Maximizing performance: On the board layout 
from the power supply circuit, run the power and 
return traces to the decoupling capacitors first, 
and then to the device pins. This ensures that the 
decoupling capacitors are first in the power chain. 
Equally important is to keep the trace length 
between the capacitor and the power pins to a 
minimum, thereby reducing PCB trace 
inductance.
2.2.2
TANK CAPACITORS
On boards with power traces running longer than
six inches in length, it is suggested to use a tank capac-
itor for integrated circuits, including microcontrollers, to
supply a local power source. The value of the tank
capacitor should be determined based on the trace
resistance that connects the power supply source to
the device, and the maximum current drawn by the
device in the application. In other words, select the tank
capacitor so that it meets the acceptable voltage sag at
the device. Typical values range from 4.7
F to 47 F.
2.2.3
CONSIDERATIONS WHEN USING 
BOR
When the Brown-out Reset (BOR) feature is enabled,
a sudden change in V
DD
 may result in a spontaneous
BOR event. This can happen when the microcontroller
is operating under normal operating conditions, regard-
less of what the BOR set point has been programmed
to, and even if V
DD
 does not approach the set point.
The precipitating factor in these BOR events is a rise or
fall in V
DD
 with a slew rate faster than 0.15V/
s.
An application that incorporates adequate decoupling
between the power supplies will not experience such
rapid voltage changes. Additionally, the use of an
electrolytic tank capacitor across V
DD
 and V
SS
, as
described above, will be helpful in preventing high slew
rate transitions.
If the application has components that turn on or off,
and share the same V
DD
 circuit as the microcontroller,
the BOR can be disabled in software by using the
SBOREN bit before switching the component. After-
wards, allow a small delay before re-enabling the BOR.
By doing this, it is ensured that the BOR is disabled
during the interval that might cause high slew rate
changes of V
DD
.
Note:
Not all devices incorporate software BOR
control. See 
device-specific information.