Microchip Technology MA300015 Data Sheet

Page of 236
© 2011 Microchip Technology Inc.
DS70150E-page 15
dsPIC30F6010A/6015
2.0
CPU ARCHITECTURE 
OVERVIEW
This chapter summarizes the CPU and peripheral
functions of the dsPIC30F6010A/6015.
2.1
Core Overview
The core has a 24-bit instruction word. The Program
Counter (PC) is 23 bits wide with the Least Significant
bit (LSb) always clear (see 
), and the Most Significant bit (MSb)
is ignored during normal program execution, except for
certain specialized instructions. Thus, the PC can
address up to 4M instruction words of user program
space. An instruction prefetch mechanism is used to
help maintain throughput. Program loop constructs,
free from loop count management overhead, are sup-
ported using the DO and REPEAT instructions, both of
which are interruptible at any point.
The working register array consists of 16x16-bit regis-
ters, each of which can act as data, address or offset
registers. One working register (W15) operates as a
Software Stack Pointer for interrupts and calls.
The data space is 64 Kbytes (32K words) and is split into
two blocks, referred to as X and Y data memory. Each
block has its own independent Address Generation Unit
(AGU). Most instructions operate solely through the X
memory AGU, which provides the appearance of a sin-
gle unified data space. The Multiply-Accumulate (MAC)
class of dual source DSP instructions operate through
both the X and Y AGUs, splitting the data address space
into two parts (see 
). The X and Y data space boundary is device-
specific and cannot be altered by the user. Each data
word consists of 2 bytes, and most instructions can
address data either as words or bytes.
There are two methods of accessing data stored in
program memory:
• The upper 32 Kbytes of data space memory can be 
mapped into the lower half (user space) of program 
space at any 16K program word boundary, defined by 
the 8-bit Program Space Visibility Page (PSVPAG) 
register. This lets any instruction access program 
space as if it were data space, with a limitation that 
the access requires an additional cycle. Moreover, 
only the lower 16 bits of each instruction word can be 
accessed using this method. 
• Linear indirect access of 32K word pages within pro-
gram space is also possible using any working reg-
ister, via table read and write instructions. Table 
read and write instructions can be used to access all 
24 bits of an instruction word.
Overhead-free circular buffers (Modulo Addressing)
are supported in both X and Y address spaces. This is
primarily intended to remove the loop overhead for
DSP algorithms.
The X AGU also supports Bit-Reversed Addressing on
destination Effective Addresses, to greatly simplify
input or output data reordering for radix-2 FFT algo-
rithms. Refer to 
 for details on Modulo and Bit-Reversed
Addressing.
The core supports Inherent (no operand), Relative, Lit-
eral, Memory Direct, Register Direct, Register Indirect,
Register Offset and Literal Offset Addressing modes.
Instructions are associated with predefined addressing
modes, depending upon their functional requirements.
For most instructions, the core is capable of executing
a data (or program data) memory read, a working reg-
ister (data) read, a data memory write and a program
(instruction) memory read per instruction cycle. As a
result, 3-operand instructions are supported, allowing
C = A + B operations to be executed in a single cycle.
A DSP engine has been included to significantly
enhance the core arithmetic capability and throughput.
It features a high-speed 17-bit by 17-bit multiplier, a
40-bit ALU, two 40-bit saturating accumulators and a
40-bit bidirectional barrel shifter. Data in the accumula-
tor or any working register can be shifted up to 16 bits
right or 16 bits left in a single cycle. The DSP instruc-
tions operate seamlessly with all other instructions and
have been designed for optimal real-time performance.
The  MAC class of instructions can concurrently fetch
two data operands from memory, while multiplying two
W registers. To enable this concurrent fetching of data
operands, the data space has been split for these
instructions and linear for all others. This has been
achieved in a transparent and flexible manner, by ded-
icating certain working registers to each address space
for the MAC class of instructions. 
The core does not support a multi-stage instruction
pipeline. However, a single stage instruction prefetch
mechanism is used, which accesses and partially
decodes instructions a cycle ahead of execution, in
order to maximize available execution time. Most
instructions execute in a single cycle, with certain
exceptions.
The core features a vectored exception processing
structure for traps and interrupts, with 62 independent
vectors. The exceptions consist of up to 8 traps (of
which 4 are reserved) and 54 interrupts. Each interrupt
is prioritized based on a user-assigned priority between
1 and 7 (1 being the lowest priority and 7 being the
highest) in conjunction with a predetermined ‘natural
order’. Traps have fixed priorities, ranging from 8 to 15.
Note:
This data sheet summarizes features of
this group of dsPIC30F devices and is not
intended to be a complete reference
source. For more information on the
peripherals, register descriptions and
general device functionality, refer to the
dsPIC30F Family Reference Manual”
(DS70046). For more information on the
device instruction set and programming,
refer to the “16-bit MCU and DSC
Programmer’s Reference Manual”
(DS70157).