Keithley 6514/E Digital-Multimeter, DMM, 6514/E Data Sheet

Product codes
6514/E
Page of 4
LO
W L
E
V
E
L M
E
A
S
U
R
E & S
O
U
R
C
E
A Greater Measure of Confidence
www.keithley.com
1.888.KEITHLEY 
(U.S. only)
6514
Programmable Electrometer
Economical Component Testing
Once, electrometers were simply considered too slow to keep up with the 
high throughput that production test applications demand . The Model 6514 
is designed for fast, sensitive measurements, providing speeds up to 1200 
readings per second with fast integration or 17 measurements per second 
with 60Hz line-cycle integration . It offers 10fA resolution on 2nA signals, 
settling to within 10% of the final value in just 15ms . A normal-mode rejec-
tion ratio (NMRR) of 60dB allows making accurate low current measure-
ments, even in the  presence of line frequency induced currents, which is a 
common concern in production floor environments . The instrument’s sen-
sitivity makes it easy to determine the leakage resistance on capacitances 
up to 10nF or even on  higher capacitances when a series resistor is used .
While the Model 6514 can be easily operated manually using the front 
panel controls, it can also be externally controlled for automated test 
applications . Built-in IEEE-488 and RS-232 interfaces make it possible 
I
D
6514 Electrometer
R
L
I
L
 = 0
Photodiode
(no incident
light)
+
V
BURDEN
CAL V
OFFSET
Total offset
voltage = 0
A/D
figure 2. Dark Current Measurement with burden Voltage Corrected
Leakage
Resistance
R
L
I
L
(error current
due to
V
BURDEN
)
Photodiode
(no incident
light)
+
V
BURDEN
A/D
I
D
Electrometer
figure 1. Dark Current Measurement with burden Voltage uncorrected
to 
 
program all instrument functions over the bus through a computer 
controller . The instrument’s interfaces also simplify integrating external 
hardware, such as sources, switching systems, or other instruments, into 
the test system . A digital I/O interface can be used to link the Model 6514 
to many popular component handlers for tight systems integration in bin-
ning, sorting, and similar applications .
These features make the Model 6514 a powerful, low cost tool for systems 
designed to test optical devices and leakage resistance on low-value capaci-
tors, switches, and other devices, particularly when the test system already 
includes a voltage source or when the source current/measure voltage 
technique is used to determine  resistance .
low Voltage burden
The Model 6514’s feedback ammeter design minimizes voltage offsets in 
the input circuitry, which can affect current measurement accuracy . The 
instrument also allows active cancellation of its input voltage and current 
offsets, either manually via the front panel controls or over the bus with 
IEEE-488 commands .
Dark Current Measurements
When measuring dark currents (Figure 1) from a device such as a 
photodiode, the ammeter reads the sum of two different currents . The first 
current is the dark current (I
D
) generated by the detector with no light 
falling upon the device (in other words, the signal of interest); the second 
one is the leakage current (I
L
) generated by the voltage burden (V
BURDEN
appearing at the terminals of the ammeter . In a feedback ammeter, the 
primary “voltage burden” is the amplifier offset voltage . This leakage 
current represents an error current . Without the use of cancellation 
techniques, I
L
 = V
BURDEN
/R
L
 . Figure 2 illustrates how the Model 6514’s 
CAL V
OFFSET
 is adjusted to cancel V
BURDEN
 to within the voltage noise level 
of a few microvolts, so the measured current is only the true dark current 
(I
D
) of the photodiode . In a similar manner, offset currents can also be 
cancelled . Earlier electrometers used an internal numerical correction 
technique in which the voltage burden was still present, so the measured 
dark current included the error term I
L
 = V
BURDEN
/R
L
 .
Voltage burden and Measurement Error
Electrometers provide current measurement with lower  terminal voltage 
than is possible when making DMM meas urements . As shown in Figure 
3, DMMs measure current using a shunt resistance that develops a voltage 
(typically 200mV full-range) in the input circuit . This creates a terminal 
voltage (V
BURDEN
) of about 200mV, thereby lowering the measured current . 
Electrometers reduce this terminal  voltage by using the feedback ammeter 
configuration  illustrated in Figure 1 . The Model 6514 lowers this terminal 
voltage still further—to the level of the voltage noise—by canceling out the 
small offset voltage that remains, as shown in Figure 2 . Any error signals that 
remain are  negligible in comparison to those that can occur when  measuring 
current with a DMM .
Fa
st
, p
re
ci
se
 c
ur
re
nt
, c
har
ge
, vol
ta
ge
, a
nd
 re
si
st
an
ce
 m
ea
sure
m
en
ts
Fa
st
, p
re
ci
se
 c
ur
re
nt
, c
har
ge
, vol
ta
ge
, a
nd
 re
si
st
an
ce
 m
ea
sure
m
en
ts