Hameg HM8112-3 Digital-Multimeter, DMM, 1 200 000 Counts 25-8112-0302 Data Sheet

Product codes
25-8112-0302
Page of 64
43
Subject to change without notice
3.5  single-slope A/D conversion
Name:  Single Slope
V
r
t
0 V
V
in
 = V
ref
V
t
1
t
2
Fig. 5:  single-slope
The simplest method is the single slope conversion. A sawtooth 
is generated by integrating a reference voltage V
ref
. There are 
two comparators, one compares the ramp with 0 V, the second 
with the unknown input voltage V
in
. As soon as the ramp cros-
ses 0 V, a counter is started which is stopped when the second 
comparator switches at V
in
. The accumulated count is propor-
tional to the input voltage V
in
. The disadvantage is the limited 
accuracy as it is directly affected by R and C of the integrator.
3.6  Dual-slope A/D conversion
V
r1
V
r2
t
0 V
V
r
t
1
t
2
t
3
t
3
t
2
t
= const.
Fig. 6:  Dual-slope principle
With the dual slope method the accuracy is not dependent 
on R and C of the integrator, both and the counter frequency 
must only be constant during a complete conversion cycle. The 
measurement starts at time t
1
: a counter is started while the 
input voltage Vin is integrated. The integration stops when the 
counter reaches its maximum count, the integration time Δt
1
 
is thus constant, the input voltage is disconnected from the 
integrator. Now the reference voltage Vref which is of opposite 
polarity is connected to the integrator. At time t
2
 the counter 
starts to count again. The ramp changes its polarity and runs 
towards 0 V. The counter stops at t
3
 when the ramp reaches 0 V. 
The time span Δt
2
 = t
3
 – t
2
 is proportional to the input voltage. 
If the input voltage was high, a higher ramp potential will re-
sult at the end of Δt
1
 as if the input voltage was small. A small 
input voltage will yield a lower slope and a lower ramp voltage 
(see V
r2
). As the reference voltage which is connected to the 
integrator at t
2
 is constant, the downward slope is constant, 
hence the time for disharging the integration capacitor differs. 
It takes more time to discharge the higer ramp voltage V
r1
 than 
for discharging the smaller ramp voltage V
r2
. The input voltage 
Vin can thus be determined from the respective discharge time 
span Δt
2
 = t
3
 – t
2
 and the constant reference voltage.
Advantages:
The accuracy is no longer dependent on the accuracy of the RC 
of the integrator, nor on the counter frequency. all 3 must only 
be constant during a complete cycle Δt
1
 + Δt
2
. If their values 
change over time, this will only affect the slopes of both ramps.
If the slope of the upward ramp becomes higher, a higher ramp 
voltage V
r
 will be reached. But the downward slope will also be 
steeper such that the ramp will cross 0 V at the same point in 
time t
3
 as before. 
V
r1*
V
r1
t
0 V
V
r
t
2
t
= const.
t
1
t
2
t
3
t
3
Fig. 7:  Dual slope: change of time constant by component drift
As this type of converter does not measure the instantaneous 
value of the input voltage but its average during the upintegra-
tion time Δt
1
, high frequency ac voltages are attenuated. If the 
frequency of the superimposed ac voltage is equal to 1/Δt
1
 or a 
multiple thereof, this frequency will be completely suppressed. 
If Δt
1
 is made equal to the line frequency or multiples thereof, 
hum interference will be rejected.
3.7 
multi-slope A/D conversion
The Multiple Slope method is based on the Dual Slope method. 
Several measurements are performed with the Dual Slope 
method, their results are averaged. This calculated value wil 
V r1
V r1
t
0 V
Vr
Phase 1
Phase 2
Phase 3 4
5
Phase 1
t1
t1
t2
t4 t5/0
t0
t3
Auto-Zero
#
V
i
dt
#
V
ref
dt
Auto-Zero
Fig. 8:  multi-slope
m e a s u r e m e n t  P r i n c i p l e s  a n d  B a s i c s          
          m e a s u r e m e n t  P r i n c i p l e s  a n d  B a s i c s