STMicroelectronics A 200 W ripple-free input current PFC pre-regulator with the L6563S EVL6563S-200ZRC EVL6563S-200ZRC Data Sheet

Product codes
EVL6563S-200ZRC
Page of 39
AN3180
Zero-ripple current phenomenon: practice
Doc ID 17273 Rev 1
13/39
   
   
   
Zero-ripple current phenomenon: practice
Before giving details of the practical realization of a coupled inductor able to provide ripple 
steering, it is useful to draw some conclusions of considerable practical interest from the 
theoretical analysis carried out in the previous sections:
1.
The fundamental point is that to achieve zero-ripple current in a coupled inductor with 
low sensitivity to parameter spread, a high-leakage magnetic structure is needed, 
which is contrary to the traditional transformer design practice. Then, in the important 
case of inductors realized with a gapped ferrite core plus bobbin assembly, the usual 
concentric winding arrangement is not recommended, although higher leakage 
inductance values can be achieved by increasing the space between the windings. 
However, it is difficult to obtain a stable value, because it depends on parameters (such 
as winding surface irregularities or spacer thickness) which are difficult to control. Other 
methods are used, such as placing the windings on separate core legs (if using an EE 
core) or side-by-side on the same leg. The latter arrangement is possible with both EE 
and pot cores (see 
). They permit much more stable leakage inductance 
values, because they are related to the geometry and the mechanical tolerances of the 
bobbin, which are much better controlled. At this point there is the practical issue of 
finding suitable bobbins for such arrangements: large production quantities could make 
the case for a custom product, but using something readily available in the market is a 
good choice anyway. Slotted bobbins, like those illustrated in 
, are quite 
commonly available from several manufacturers; they easily lend themselves to a side-
by-side winding arrangement, and they are considered here.
Figure 8.
Examples of high-leakage magnetic structures (cross-section)
2. 
The fundamental action of the smoothing transformer is to split up the current into its 
DC component, which flows in the DC winding, and its AC component, which flows in 
the AC winding. In this way the total rms current in the windings is unchanged, hence 
the total copper area needed to handle the two currents separately is quite close to that 
of a single inductor carrying the total current. As compared to a single inductor, no core 
size increase is typically expected because of insufficient winding window area, except 
for a few marginal cases where the slight decrease of window area due to slotting 
becomes critical or where the DC winding has many more turns. It is also worth noting 
that the DC winding can be made with a single wire, as its residual AC current is low; 
only the AC winding is made with litz or multi-stranded wire. This minimizes the 
additional cost of the added winding.