STMicroelectronics A 200 W ripple-free input current PFC pre-regulator with the L6563S EVL6563S-200ZRC EVL6563S-200ZRC Data Sheet

Product codes
EVL6563S-200ZRC
Page of 39
   
   
   
Zero-ripple current phenomenon: theory
AN3180
8/39
 Doc ID 17273 Rev 1
Equation 6
 and 
 are noteworthy because of their concision in expressing the conditions for 
zero-ripple current phenomenon to occur, but unfortunately its physical nature is not shown. 
To provide some physical insight, let us consider the a = n coupled inductor model (n is the 
physical turn ratio N
2
/N
1
) excited by equal terminal voltages v(t), shown in 
Figure 6.
Coupled inductor a = n model under zero-ripple current conditions
Proceeding with the same technique, in order for the ripple current i
2
(t) to be zero, the 
voltage across the secondary leakage Ll
2
 must be zero, that is, the voltages on either side of 
Ll
2
 must be equal to one another. On the other hand, if i2(t)=0 the voltage impressed on the 
primary side of the ideal transformer v'(t) is given by the ratio of the inductive divider made 
up of the primary leakage inductance Ll
1
 and the magnetizing inductance L
M
; the voltage 
applied to the left-hand side of Ll
2
 is equal to nv'(t). Then, there is zero-ripple current on the 
secondary side of the coupled inductor if the following condition is fulfilled:
Equation 7
which is equivalent to
 
, as can be easily shown, considering that L
M
 = M/n.
 provides the desired physical interpretation of the zero-ripple current condition: it 
occurs when the turn ratio exactly compensates for the primary winding leakage flux, so that 
the primary winding induces, by transformer effect, a voltage identical to its own excitation 
voltage on the secondary winding; and so, if this is externally excited by the same voltage, 
no ripple current flows through it.
The extensions of this interpretation to the case of zero-ripple primary current (just reflect 
the magnetizing inductance L
M
 to the secondary side) and to that of proportional excitation 
voltages (
α ≠ 1) are obvious.
1
L
M
L
L
k
k
1
1
2
=
=
=
e
n
!-V
L

W
L

W
Q
Y W
Y W
/
0
/
O

/
O

L
0
W
LGHDO
Y W
Y W
1
L
L
L
L
L
(t)
(t)
L
L
L
1
M
M
1
M
M
1
M
=
=
+
=
+
n
n
v
v
n
l
l