STMicroelectronics 12 V, 150 mA non-isolated buck converter using VIPer™ Plus - VIPER06XS STEVAL-ISA115V1 STEVAL-ISA115V1 Data Sheet

Product codes
STEVAL-ISA115V1
Page of 29
DocID024275 Rev 2
19/29
AN4260
Feedback loop calculation guidelines
7.2 
Compensation procedure for a DCM buck
The first step is to choose the pole and zero of the compensator and the crossing frequency.
In this case C(f) has only a zero (fzc) and a pole at the origin, thus a possible setting is:
fzc=k*fp
fcross = fcross_sel_
≤  
fsw 
/
10
where k is chosen arbitrarily. A starting point could be k=5
After selecting fcross_sel, G1(fcross_sel) can be calculated from 
 and, since by 
definition it is 
C(fcross_sel)*G1(fcross_sel)
= 1, C
0
 can be calculated as follows:
Equation 11
At this point the Bode diagram of G1(f)*C(f) can be plotted, in order to check the phase 
margin for the stability.
If the margin is not high enough, another choice should be made for k and fcross_sel, and 
the procedure is repeated.
When the stability is ensured, the next step is to find the values of the schematic 
components, which can be calculated as follows:
From 
Equation 12
and from 
Equation 13
The quantities found in 
 and 
 are suggested values. Commercial 
values are chosen, let us call them C7_act, R7_act, resulting into fzc_act.
Equation 14
C
0
 value is also recalculated from 
Equation 15
C
0
j 2
π
fcross_sel
⋅ ⋅ ⋅
1
j fcross_sel
fzc
----------------------------------
+
-----------------------------------------------------
H
C OM P
G1 fcross_sel
(
)
---------------------------------------------
=
C7
L fsw
V
IN
V
OU T
-------------------------
Gm
C
0
----------------
R4
R4
R5
+
----------------------
=
R3
1
2
π
fzc C7
⋅ ⋅
------------------------------------
=
fzc_act
1
2
π
R3_act C7_act
⋅ ⋅
-----------------------------------------------------------
=
C
0
_act
L fsw
V
IN
V
O UT
-------------------------
Gm
C7_act
-------------------
R4_act
R4_act
R5 4
( )
_act
+
------------------------------------------------------
=