Intel i5-4300Y CL8064701558601 Data Sheet

Product codes
CL8064701558601
Page of 123
Voltage Regulator Protection using PROCHOT#
PROCHOT# may be used for thermal protection of voltage regulators (VR). System
designers can create a circuit to monitor the VR temperature and assert PROCHOT#
and, if enabled, activate the TCC when the temperature limit of the VR is reached.
When PROCHOT# is configured as a bi-directional or input only signal, if the system
assertion of PROCHOT# is recognized by the processor, it will result in an immediate
transition to the lowest P-State (Pn) supported by the processor and graphics cores.
Systems should still provide proper cooling for the VR and rely on bi-directional
PROCHOT# only as a backup in case of system cooling failure. Overall, the system
thermal design should allow the power delivery circuitry to operate within its
temperature specification even while the processor is operating at its TDP.
Thermal Solution Design and PROCHOT# Behavior
With a properly designed and characterized thermal solution, it is anticipated that
PROCHOT# will only be asserted for very short periods of time when running the most
power intensive applications. The processor performance impact due to these brief
periods of TCC activation is expected to be so minor that it would be immeasurable.
However, an under-designed thermal solution that is not able to prevent excessive
assertion of PROCHOT# in the anticipated ambient environment may:
Cause a noticeable performance loss.
Result in prolonged operation at or above the specified maximum junction
temperature and affect the long-term reliability of the processor.
May be incapable of cooling the processor even when the TCC is active
continuously (in extreme situations).
Low-Power States and PROCHOT# Behavior
Depending on package power levels during package C-states, outbound PROCHOT#
may de-assert while the processor is idle as power is removed from the signal. Upon
wakeup, if the processor is still hot, the PROCHOT# will re-assert, although typically
package idle state residency should resolve any thermal issues. The PECI interface is
fully operational during all C-states and it is expected that the platform continues to
manage processor core and package thermals even during idle states by regularly
polling for thermal data over PECI.
THERMTRIP# Signal
Regardless of enabling the automatic or on-demand modes, in the event of a
catastrophic cooling failure, the package will automatically shut down when the silicon
has reached an elevated temperature that risks physical damage to the product. At
this point the THERMTRIP# signal will go active.
Critical Temperature Detection
Critical Temperature detection is performed by monitoring the package temperature.
This feature is intended for graceful shutdown before the THERMTRIP# is activated.
However, the processor execution is not guaranteed between critical temperature and
THERMTRIP#. If the Adaptive Thermal Monitor is triggered and the temperature
remains high, a critical temperature status and sticky bit are latched in the
PACKAGE_THERM_STATUS MSR 1B1h and the condition also generates a thermal
interrupt, if enabled. For more details on the interrupt mechanism, refer to the Intel
®
64 and IA-32 Architectures Software Developer’s Manual.
5.6.3.2  
5.6.3.3  
5.6.3.4  
5.6.3.5  
5.6.3.6  
Thermal Management—Processors
Mobile 4th Generation Intel
®
 Core
 Processor Family, Mobile Intel
®
 Pentium
®
 Processor Family, and Mobile Intel
®
 Celeron
®
Processor Family
July 2014
Datasheet – Volume 1 of 2
Order No.: 329001-007
69