Intel Core 2 Duo E7300 BX80570E7300 User Manual

Product codes
BX80570E7300
Page of 128
 
Processor Thermal/Mechanical Information 
 
 
Thermal and Mechanical Design Guidelines   
 21 
T
CONTROL 
will dissipate more power than a part with lower value (farther from 0, e.g. 
larger negative number) of T
CONTROL 
when running the same application.  
This is achieved in part by using the 
CA
 vs. RPM and RPM vs. Acoustics (dBA) 
performance curves from the Intel enabled thermal solution. A thermal solution 
designed to meet the thermal profile would be expected to provide similar acoustic 
performance of different parts with potentially different T
CONTROL
 values.  
The value for T
CONTROL
 is calculated by the system BIOS based on values read from a 
factory configured processor register. The result can be used to program a fan speed 
control component. See the appropriate processor datasheet for further details on 
reading the register and calculating T
CONTROL
See Chapter 
7, Intel
®
 Quiet System Technology (Intel
®
 QST), for details on 
implementing a design using T
CONTROL
 and the Thermal Profile. 
2.3 
Heatsink Design Considerations 
To remove the heat from the processor, three basic parameters should be considered:  
 
The area of the surface on which the heat transfer takes place. Without any 
enhancements, this is the surface of the processor package IHS. One method used 
to improve thermal performance is by attaching a heatsink to the IHS. A heatsink 
can increase the effective heat transfer surface area by conducting heat out of the 
IHS and into the surrounding air through fins attached to the heatsink base.  
 
The conduction path from the heat source to the heatsink fins. Providing a 
direct conduction path from the heat source to the heatsink fins and selecting 
materials with higher thermal conductivity typically improves heatsink 
performance. The length, thickness, and conductivity of the conduction path from 
the heat source to the fins directly impact the thermal performance of the 
heatsink. In particular, the quality of the contact between the package IHS and 
the heatsink base has a higher impact on the overall thermal solution performance 
as processor cooling requirements become stricter. Thermal interface material 
(TIM) is used to fill in the gap between the IHS and the bottom surface of the 
heatsink, and thereby improve the overall performance of the stack-up (IHS-TIM-
Heatsink). With extremely poor heatsink interface flatness or roughness, TIM may 
not adequately fill the gap. The TIM thermal performance depends on its thermal 
conductivity as well as the pressure applied to it. Refer to Section 
Appendix C for further information on TIM and on bond line management between 
the IHS and the heatsink base. 
 
The heat transfer conditions on the surface on which heat transfer takes 
place. Convective heat transfer occurs between the airflow and the surface 
exposed to the flow. It is characterized by the local ambient temperature of the 
air, T
A
, and the local air velocity over the surface. The higher the air velocity over 
the surface, and the cooler the air, the more efficient is the resulting cooling. The 
nature of the airflow can also enhance heat transfer  using convection. Turbulent 
flow can provide improvement over laminar flow. In the case of a heatsink, the 
surface exposed to the flow includes in particular the fin faces and the heatsink 
base. 
Active heatsinks typically incorporate a fan that helps manage the airflow through 
the heatsink.