National Instruments 370753C-01 Manual De Usuario

Descargar
Página de 157
Chapter 4
System Analysis
© National Instruments Corporation
4-5
ans (a column vector) =
-0.98875 + 2.4773 j
-0.98875 - 2.4773 j
k (a scalar) = 1.34P
Algorithm
The algorithm used for state-space zero computation creates a 
reduced-order S(
λ), using Householder reflections to do the necessary 
orthogonal row and column compressions of the state-space matrices. 
The eigenvalues of this reduced matrix are then found using QZ. This 
method handles the degenerate case and systems with zeros at infinity 
[EmV82]. 
Note
zeros( )
 also can be used as a matrix building function when used with scalar or 
matrix input. For more details on this usage, refer to the MATRIXx Help
Partial Fraction Expansion
By inverse Laplace or z-transforming a transfer function, you can identify 
the impulse response based on knowledge of the system pole and zero 
locations. The most convenient form to use in doing this is the partial 
fraction expansion of the transfer function. Each term of the partial fraction 
expansion has a constant numerator—the residue—and a pole term 
denominator, as shown in the following equation, where p
2
 is a repeated 
pole, and p
4
 and p
5
 are a conjugate pair:
Each p
k
 represents a pole of the system, and the corresponding r
k
 is the 
residue at that pole. If p
k
 is a repeated pole, it has M residues, where M is 
the multiplicity of the pole. Complex pole pairs have complex residue pairs. 
If the transfer function contains a constant (or feedthrough) term, this term 
is represented by the scalar value C in the preceding equation. The values 
of the residues give the magnitude of the response from the inverse 
transform of the respective partial fraction terms. For an example of 
dynamic response with partial fraction expansion, refer to Example 4-3. 
[Oga70] provides a good reference on partial-fraction expansion for 
different orders of complex and real poles. [ChB84] contains a thorough 
mathematical treatment of residues. 
H q
( )
C
r
1
q p
1
+
--------------
r
2
q p
2
+
(
)
2
---------------------
r
3
q p
3
+
--------------
α
4
q
α
5
+
q p
4
+
(
q p
5
+
(
)
---------------------------------------
r
n
q p
n
+
--------------
+
+
+
+
+
+
=