Clark Synthesis TA0.1 Manual Suplementario

Descargar
Página de 4
The Five Pathways To Perceiving Sound
 
In the following section, you will see the five ways pulsations can be perceived in the human body in the 
auditory frequency range. Each of these sensory pathways has a different mechanism, but all of them can 
reinforce the sounds that come in through our ears. The general term adopted for these additional four 
pathways is “tactile sound.” 
 
1. Hearing via Air Transmission 
The standard way we perceive acoustic energy is through our ears. The mechanism is simple. Vibrating air 
molecules enter the ear canal and push against the eardrum. This energy is transmitted to the Cochlea 
through the inner ear bones. The Cochlea is a fluid-filled sense organ in which small hairs, Cilia, convert 
mechanical vibrations into the perception of sound.  
2. Feeling via Deep Tissue Movement 
The ground vibrating almost imperceptibly beneath our space shuttle observers is stimulating nerve endings 
in deep tissues and muscle mass. This sense is called “kinesthetic.” It comes from the Greek word kinos, 
which means, “to move.” These kinesthetic sensations are the gut feelings that occur when powerful objects 
excite the ground near us. 
 
3. Feeling via Skeletal Joint Movement 
The ground vibrating beneath our observers is also stimulating nerve endings in skeletal joints and deep 
tissues. This sense is called “haptic.” It comes from the Greek word haptein, which means, “to touch.” 
4. Feeling via Tactile Stimulation 
The ground moving beneath our friends is also stimulating nerve endings just under the outer layer of skin. 
This sense should be familiar to you; it is your sense of touch. Ordinarily, the sense of touch does not come 
into effect with acoustic events except in situations where excessively loud noises are produced. It also 
comes into effect for musicians who hold their instruments close to their bodies when playing. 
5. Feeling via Bone Conduction 
The Cochlea, the sense organ that takes the mechanical movements of acoustic energy and translates them 
into nerve impulses, is firmly encased in the skull bone. This bony protection allows a secondary pathway for 
sound waves to reach the Cochlea; directly through the bone mass itself. The phenomenon of bone 
conduction is well known and has been exploited by many people. For example, in cases of structural 
hearing loss where the eardrum or inner ears bones are damaged beyond repair, various companies 
manufacture bone conducting “hearing aids.” These devices clamp onto the back of the ear, or are actually 
implanted into the skull, to directly stimulate the Cochlea via local bone conduction 
 
Chapter Three:
 
Tactile Sound Applications
 
So, Now I Know How My Body Processes Sound, How Does That Relate to Transducers?
 
T
his final section provides you with an overview of how tactile sound transducers work and in what type of 
applications they can be used. 
General Overview
 
Tactile sound reproduction can be utilized for many purposes. Of primary interest is the addition of tactile 
frequencies to the production of recorded music and movie soundtracks, which provides dramatic effects. 
Participants often refer to the experience as being thoroughly engaging, and describe a feeling “that 
encompasses a sixth sense.” That sixth sense is the increased realism obtained when tactile cues are added 
to conventional air-transmitted sounds. 
What Musicians Have To Say About Tactile Sound
 
One of the earliest groups to embrace the use of tactile sound transducers were musicians. To understand 
why, let’s look at the physical mechanisms at work during a violinist’s performance, for example: 
 
When you listen to the recording of a violinist, you are attempting to recreate the exact perceptions the 
instrumentalist felt during the live performance. It may surprise you to realize that what you experience and 
what the violinist experiences are two very different things. Here’s why: when a violinist performs, he/she is