Linear Technology DC1367A - LTM4615EV Demo Board | μModule Regulator, Dual 4A Plus VLDO DC1367A DC1367A Hoja De Datos

Los códigos de productos
DC1367A
Descargar
Página de 24
LTM4615
11
4615fb
For more information 
www.linear.com/LTM4615
applicaTions inForMaTion
Dual Switching Regulator
The typical LTM4615 application circuit is shown in Fig-
ure 12. External component selection is primarily deter-
mined by the maximum load current and output voltage. 
Refer to Table 4 for specific external capacitor requirements 
for a particular application.
V
IN
 to V
OUT
 Step-Down Ratios
There are restrictions in the maximum V
IN
 to V
OUT
 step-
down ratio that can be achieved for a given input voltage 
on the two switching regulators. The LTM4615 is 100% 
duty cycle, but the V
IN
 to V
OUT
 minimum dropout will be 
a function the load current. A typical 0.5V minimum is 
sufficient.
Output Voltage Programming 
Each regulator channel has an internal 0.8V reference 
voltage. As shown in the block diagram, a 4.99k internal 
feedback resistor connects the V
OUT
 and FB pins together. 
The output voltage will default to 0.8V with no feedback 
resistor. Adding a resistor R
FB
 from the FB pin to GND 
programs the output voltage:
 
 
V
OUT
= 0.8V •
4.99k +R
FB
R
FB
or equivalently,
 
 
R
FB
=
4.99k
V
OUT
0.8V
−1
Table 1. FB Resistor Table vs Various Output Voltages
V
OUT
0.8V
1.2V
1.5V
1.8V
2.5V
3.3V
FB
Open
10k
5.76k
3.92k
2.37k
1.62k
Input Capacitors
The LTM4615 module should be connected to a low AC 
impedance DC source. One 4.7µF ceramic capacitor is 
included inside the module for each regulator channel. 
Additional input capacitors are needed if a large load step 
is required, up to the full 4A level, and for RMS ripple 
current requirements. A 47µF bulk capacitor can be used 
for more input capacitance. This 47µF capacitor is only 
needed if the input source impedance is compromised by 
long inductive leads or traces. The bulk capacitor can be 
a switcher-rated aluminum electrolytic OS-CON capacitor.
For a buck converter, the switching duty cycle can be 
estimated as:
 
D =
V
OUT
V
IN
Without considering the inductor ripple current, the RMS 
current of the input capacitor can be estimated as:
 
 
I
CIN(RMS)
=
I
OUT(MAX)
η%
• D • 1– D
(
)
In the above equation, η% is the estimated efficiency of 
the power module. If a low inductance plane is used to 
power the device, then no input capacitance is required. The 
internal 4.7µF ceramics on each channel input are typically 
rated for 1A of RMS ripple current up to 85°C operation. 
The worse-case ripple current for the 4A maximum current 
is 2A or less. An additional 10µF or 22µF ceramic capacitor 
can be used to supplement the internal capacitor with an 
additional 1A to 2A ripple current rating.
Output Capacitors
The LTM4615 switchers are designed for low output volt-
age ripple on each channel. The bulk output capacitors 
are chosen with low enough effective series resistance 
(ESR) to meet the output voltage ripple and transient 
requirements. The output capacitors can be a low ESR 
tantalum capacitor, low ESR polymer capacitor or ceramic 
capacitor. The typical output capacitance range is 66µF 
to 100µF. Additional output filtering may be required by 
the system designer if further reduction of output ripple 
or dynamic transient spikes is required. Table 4 shows a 
matrix of different output voltages and output capacitors 
to minimize the voltage droop and overshoot during a 2A/
µs transient. The table optimizes total equivalent ESR and 
total bulk capacitance to maximize transient performance.