APC ACPDX21-86 Manuel D’Utilisation

Page de 92
InRoom Precision AC Tech Data Manual
2
Scalable Solution for Critical Environments       
Temperature and Humidity 
Design Conditions
Maintenance of temperature and 
humidity design conditions is 
critical to the smooth operation of 
a technology room. Based on 
ASHRAE TC9.9, the 
recommended design conditions 
for class one and class two 
environments should be 20–25°C 
(68–77°F) and 40–55% relative 
humidity (R.H.).  Precision air 
conditioning is designed to 
maintain temperature at ±2°F and 
humidity at ±3–5% R.H. 24 hours 
a day, 365 days a year. Vapor 
barriers and sealed rooms are 
required to maintain these 
tolerances. In contrast, comfort 
systems are designed to maintain 
±5°F from the temperature 
setpoint. There is usually no 
dedicated humidity control and 
the simple controllers cannot 
maintain the setpoint tolerance 
required for temperature, 
allowing potentially harmful 
temperature and humidity swings 
to occur. This is not acceptable for 
sensitive electronic equipment.
Air Quality
Precision air conditioners provide 
a high volume of air flow, around 
600 CFM/ton (286 L/m, 150 
CFM/kW). This high CFM moves 
more air through the space 
improving air distribution and 
reducing the chance of localized 
hot spots. It also allows more air 
to move through filters, ensuring 
a cleaner environment. This 
requires a moderate-to high-
efficiency filter bank to minimize 
airborne particles.
Low Humidity
Low humidity greatly increases 
the possibility of static electric 
discharges. Static discharges can 
corrupt data and damage 
hardware.
High Humidity
High humidity can result in tape  
surface deterioration, head 
crashes, condensation, corrosion, 
paper handling problems and gold 
and silver migration leading to 
component and board failure.
High & Low Temperature
A high or low temperature or 
rapid temperature swings can 
corrupt data processing and shut 
down an entire system. 
Temperature variations can alter 
the electrical and physical 
characteristics of electronic chips 
and other board components 
causing faulty operation or 
failure. These problems may be 
transient or may last for days. 
Transient problems can be very 
difficult to diagnose and repair.
Efficiency and Reliability
The use of energy efficient, direct 
drive fans along with fewer 
moving internal parts eliminate 
most potentials for failure. Scroll 
compressor technology provides 
unparalleled efficiency and con-
stant, reliable operation with an 
ability to withstand liquid 
refrigerant ‘slugging’ which is a 
major cause of compressor fail-
ure. The compressor is also 
equipped with an internal high 
pressure sensor which opens a 
bypass valve in case of high 
pressure. This ensures internal 
pressure compensation takes 
place and damage to the 
compressor is avoided.
APC InRoom - 
The Right Solution
The APC InRoom cooling unit 
provides the maximum amount of 
precision cooling in a compact 
footprint with the lowest 
operating cost and noise level. 
Dedicated Dehumidification 
Cycle
A dedicated dehumidification 
cycle allows the system to 
increase latent capacity without 
boosting compressor capacity, 
and also lowers the requirement 
for reheat. To achieve 
dehumidification, the electronic 
expansion valve is first partially 
closed. The reduction of the 
refrigerant mass flow makes the 
evaporation temperature drop, 
which lets the surface temperature 
in a part of the evaporator fall 
below the dew point of the air, 
causing dehumidification. For 
increased dehumidification, the 
fan speed is reduced. With a 
constant cooling capacity, the 
temperature of the air which 
flows through the heat exchanger 
coil passes below the dew point. 
The moisture contained in the air 
condenses on the heat exchanger, 
gathers in the condensate pan, and 
is carried away by the drain. To 
achieve humidification for the 
DX units with cabinet size 1 and 
all CW units, the fan speed is 
reduced.  For the DX units with 
cabinet size 2–5, approximately 
one third of the evaporator is 
isolated from the refrigerant flow 
by a solenoid valve to achieve 
dehumidification by lowering the 
evaporator temperature below the 
dew point.