Teledyne 202 Manuel D’Utilisation

Page de 24
140-072011 200/202 Series
 
Page 16 of 24
 
 
3. Theory of Operation 
This section contains a functional description of Hastings flow controllers.  Detailed schematics and 
parts lists can be obtained by contacting Hastings using the contact information found at the end of this 
document.  In this section and other sections throughout this manual, when a power supply is mentioned, 
it is assumed that the customer has a Hastings Power Supply.  These sections are not applicable if another 
type of power supply is used. 
3.1. Overall Functional 
Description 
The Hastings flow controller consists 
of a sensor, electronic circuitry, a shunt 
and a valve.  The sensor measures the 
flow rate from 0 to 10 sccm of the gas to 
be metered.  The shunt divides the flow 
such that the flow through the sensor is a 
precise percentage of the flow through 
the shunt.  The flow through the sensor 
and the shunt is always laminar.  The 
circuit board amplifies the sensor output 
and uses this output to control the valve 
position.  The valve is an automatic 
metering solenoid type; its height off the 
seat is controlled by the voltage in its 
coil.  All of these components working 
together result in a fast, stable flow 
controller. 
3.2. Sensor 
The Hastings HFM-200/HFC-202 series operates on a unique thermal electric principle whereby a 
metallic capillary tube is heated uniformly by a resistance winding attached to the midpoint of the 
capillary (see Figure 3.1).  Thermocouples TC-1 and TC-2 are welded at equal distances from the 
midpoint and develop equal outputs at zero flow.   
When flow occurs through the 
tubing, heat is transferred from 
the tube to the gas on the inlet 
side, and from the gas back to 
the tube on the outlet side 
creating an asymmetrical 
temperature distribution (see 
Figure 3.2).  The thermocouples 
sense this decrease and increase 
in the capillary tube temperature 
and produce a millivolt output 
signal proportional to that 
change.   
For a constant power input, 
the differential thermocouple 
output is a function of the mass 
flow rate and the heat capacity 
of the gas.  Since the heat 
capacity of many gases is 
Figure 3.1 
Figure 3.2