Toshiba LEDEUF00019I40 Manuel D’Utilisation

Page de 43
Product specifications and configurations, and availability of products are subject to change. Variations in product  
design and product features are subject to change. Colours may vary from illustration. Errors and omissions excepted.
© Copyright 2014. Picture credits: Toshiba, Fotolia.com
GLOSSARY
Dimming of lights
LED lights can be dimmed without sacrificing 
light quality. This is the main difference from lights 
fitted with fluorescent or high-pressure discharge 
lamps. Dimming also saves more energy. There are  
different types of dimming.
 
DALI
Luminaires are controlled by the digital DALI (Digital 
Addressable Lighting Interface). This standard, adopted  
by all manufacturers, overcomes the disadvantages  
of the 1 – 10 V principle and is being used in- 
creasingly, particularly in more complex installations.  
DALI offers a two-wire line that is protected against  
polarity reversal, with noise-resistant digital signal transmission, 
direct addressability, compact instruction set, error feedback and 
defined brightness values which are independent of line length. 
DALI is also supported by building and light management systems.
1 – 10 V
Luminaires  can be dimmed via the 1 – 10 V interface.  
A voltage level between 1 V and 10 V is converted into 
corresponding lamp brightness. 
Step dimming
Streetlights have a facility for step dimming via 
a second, dry-contact circuit. When the second 
supply is switched to the lamp, the luminous flux and  
power consumption are reduced to approx. 50 %.  
This provides a very simple way of reducing the  
light level at night, enabling further energy savings  
at times when road usage is low.
Phase control
Phase control widely used for incandescent and halogen 
lamps dimming this analogic control method apply also 
to  LED  lamps.  Because  there  is  no  general  compatibility 
between all dimmers available on the market, Toshiba has 
provided a list of recommended dimmers on its website  
www.toshiba.eu/lighting
.
CONSTANT LUMEN OUTPUT
Constant luminous flux over the life of the lamp
The drop in luminous flux due to the LED technology over the 
service life of the system is compensated by increasing the 
power input. This results in constant and uniform photometric 
performance  differentiating  strongly  TOSHIBA  products  from 
standard LED systems whose lumen output drastically drops over 
time lighting.
DALI
DIMMABLE
DIMMABLE
1 –10 V
TIME
POWER CONSUMPTION %
EXAMPLE: STEP DIMMABLE E-CORE LED ROADLIGHT CONTROLLED BY TIMER.
100
50
21:00
8:00
5:30
1:00
START OF 
LIGHTING 
START OF 
NIGHT-TIME 
DIMMING
END OF 
NIGHT-TIME 
DIMMING
END OF 
LIGHTING
NORMAL 
ROAD-USE 
PERIOD 
=
100 % 
LIGHTING
NORMAL 
ROAD-USE 
PERIOD 
=
100 % 
LIGHTING
LOW ROAD-USE 
PERIOD 
50% LIGHTING
ADDITIONAL 
ENERGY SAVINGS 
DUE TO POWER 
REDUCTION
100 · 50 · 100
STEP-DIMMING
DIMMABLE
DIMMABLE
10  –100 %
DIMMABILITY
TIME
POWER  
CONSUMED
=>  DECREASING PHOTOMETRIC PERFORMANCE 
  ENERGY WASTE
WITHOUT CONSTANT LUMEN OUTPUT
ENERGY WASTE
LUMINOUS FLUX
TIME
POWER  
CONSUMED
=>  STABLE PHOTOMETRIC PERFORMANCE 
  OPTIMUM POWER CONSUMPTION
WITH CONSTANT LUMEN OUTPUT
ENERGY SAVING
LUMINOUS FLUX
Basic Photometric Units
There are several photometric base quantities in the definition of 
light sources, which characterise different qualities.
Luminous flux ϕ in lm (Lumen)
The total radiating power emitted by a 
light source, which the eye perceives as 
light.
Luminous intensity I in cd (candela)
The luminous flux of a light source per 
solid angle. With the same luminous flux, 
the light intensity increases the more the 
light source focuses the light.
Illuminance E in lx (Lux)
A  measure  of  lighting power per lit 
surface.  A  minimum  luminance  is  spe-
cified for many visual tasks and must be 
considered in the planning of the visual 
task and choice of light source.
Colour Rendering Index Ra
Colour Rendering Index (CRI) is a measure of how well a light 
source is able to accurately reproduce colours of objects being lit 
respective to the colour temperature (CCT) of the light source. The 
higher the colour rendering index, the more naturally the colours of 
an object are reproduced and therefore perceived by the observer. 
The sun has the highest CRI of 100. Most artificial light source 
are below that. The colour rendering index is determined using 
8 standardised test colour references.
Dimmability by trailing edge phase control
Luminaires can be dimmed very easily using trailing 
edge phase control. The advantage of trailing edge 
phase control compared with circuits in which the 
voltage is controlled by a resistance is that they have 
a very low power loss and are widely used in existing 
installations. The main disadvantage of trailing edge 
phase control is the non-sinusoidal current profile. Because current 
and voltage do not have the same shape, so-called distortion 
reactive power occurs. Shifting the current backwards compared 
with the voltage curve has the same effect as an inductive load, 
which electricity supply companies can only tolerate at low  
power levels. Leading edge phase control is not recommended  
for  Toshiba  lamps.  Because  there  is  no  general  compatibility  
between all dimmers available on the market, Toshiba 
 
has provided a list of recommended dimmers on its website 
www.toshiba.eu/lighting
.
Colour temperature (K Kelvin)
Colour temperature is a measure of the colour effect of a light 
source. Colour temperature is defined as the temperature of 
a black body which belongs to a particular light colour of this 
emission source.
Typical colour temperatures for light sources are:
•   below 3300 K = warm white, preferred for interior lighting
•   3300 K to 5300 K = neutral white, typical light colour for office, 
industrial and exterior lighting
•   above  5300  K  =  cool  white,  especially  common  in  exterior 
lighting.
L70 service life of LED light sources
LEDs  are  characterised  by  their  excellent  service  life.  Because 
LEDs hardly ever fail completely, the service life is defined as 
having an L70 value. Their useful life is considered to be over when 
the luminous flux has dropped to 70% of the initial luminous flux. 
After this time the LEDs age at a dramatically accelerated rate.
The service life of an LED light source is not set by the LEDs alone, 
the other electrical components and the thermal design are also 
a factor. Therefore the given service life varies from product to 
product.
 
 
 
 
 
 
 
 
Power factor λ = cos ϕ
The LED light sources need driver modules to operate which act 
capacitively from an electrical point of view. This leads to a phase 
shift between voltage and current consumption and consequently 
the apparent power S (given in Volt Amperes VA) has an effective 
power proportion P (Watts) and a reactive power Q (Volt Ampere 
reactive  VAr).  The  relationship  between  effective  power  P  and 
apparent power S is represented as the power factor λ.
LUMINOUS INTENSITY (l/cd)
LUMINOUS FLUX (Phi/lm)
ILLUMINANCE (E/lx) 
Distancer
cd
DIMMABLE
10  –100 %
GLOSSARY
Re (S)
VECTOR DIAGRAM OF APPARENT POWER S
S (VA)  = Apparent power 
P (W)   = Effective power
Q (VAr) = Reactive power
ϕ
  Phase shift in °
––
S
COS
 
ϕ
 = 
lm(S)
ϕ
Service life (h)
x
0
100%
- 30%
70%
Hours
Re
la
tiv
e l
um
in
ou
s fl
ux (
lm
)
AGEING OF LED LAMPS
 
L70
82
83