Yageo Electrolytic capacitor snap-in 10 mm 220 µF 400 V 20 % (Ø x H) 30 mm x 30 mm LG400M0220BPF-3030 1 pc(s) LG400M0220BPF-3030 Fiche De Données

Codes de produits
LG400M0220BPF-3030
Page de 91
1-4 Basic Electrical Characteristics
1. Capacitance (E.S.C.)
1. Capacitance (E.S.C.)
            C : Capacitance(F)
            R : Equivalent series resistance
            L : Equivalent aeries inductance(H)
   Fig.1-3  Simplified equivalent circuit diagram of an electrolytic capacitor
Fig 1-7  Dissipation factor vs. temperature
The capacitive component of the equivalent series circuit (equiv alent series 
capacitance ESC) is determined by applying an alternate voltage of 0.5V at a 
frequency of 120 Hz .
Temperature dependence of the capacitance
The capacitance of an electrolytic capacitor depends on the temperature : with 
decreasing temperature , the viscosity of the electrolyte increa ses reducing its 
conductivity . The capacitance will decrease if the temperature decreases .
Furthermore temperature drifts cause armature dilatation and the refore 
capacitance changes (up to 20% , depending on the series considered, from 0 to 
80°C) . This phenomenon is more evident for electrolytic capacitors than for 
other types .
       Fig 1-8  Dissipation factor vs. frequency
3. Equivalent series resistance (E.S.R.)
3. Equivalent series resistance (E.S.R.)
The equivalent series resistanceis the resistive component of the equivalent series 
circuit . The ESR value depends on frequency and temperature and is related to 
the tan 
G
 by the following equation :
Fig 1-4 Capacitance change vs. temperature
Frequency dependence of the capacitance
The effective capacitance value is derived from the impedance curve , as long  
as the impedance is still in the range where the capacitance component is
dominant .
The tolerance limits of the rated capacitance must be 
taken into account when 
calculating this value .
         Fig 1-9  ESR change vs. temperature
Fig 1-5  Capacitance change vs. frequency
The resistance of the electrolyte decreases strongly with  
increasing temperature.
2. Dissipation factor (tan
2. Dissipation factor
an
G )
The dissipation factor is the ratio between the active and the r eactive power for
a sinusoidal waveform voltage . It can be thought as a measurement of the gap 
between an actual and an ideal capacitor .
    D.F. = tan
G x 100 (%) =
Z CR x 100 (%)
= 2
fCR x 100 (%)
   where: R = Equivalent Series Resistance
C = Equivalent Series Capacitance
 = 2
f
Fig 1-10  ESR change vs. frequency
      Fig 1-6
The tan 
G  is measured with the same set up as for the series capacitance ESC .
Temperature(
)
CA
P
➝Frequency

CA
P
Temperature(
)
DF
Frequency
DF
Temperature(
q
C)
 
ESR
Frequency
ESR
C
Z
C