Analog Devices AD9233 Evaluation Board AD9233-80EBZ AD9233-80EBZ Fiche De Données

Codes de produits
AD9233-80EBZ
Page de 44
   
AD9233
 
Rev. A | Page 15 of 44 
THEORY OF OPERATION 
The AD9233 architecture consists of a front-end SHA followed 
by a pipelined switched capacitor ADC. The quantized outputs 
from each stage are combined into a final 12-bit result in the 
digital correction logic. The pipelined architecture permits the 
first stage to operate on a new input sample, while the 
remaining stages operate on preceding samples. Sampling 
occurs on the rising edge of the clock. 
Each stage of the pipeline, excluding the last, consists of a low 
resolution flash ADC connected to a switched capacitor DAC 
and interstage residue amplifier (MDAC). The residue amplifier 
magnifies the difference between the reconstructed DAC output 
and the flash input for the next stage in the pipeline. One bit of 
redundancy is used in each stage to facilitate digital correction 
of flash errors. The last stage simply consists of a flash ADC.  
The input stage contains a differential SHA that can be ac- or 
dc-coupled in differential or single-ended modes. The output-
staging block aligns the data, carries out the error correction, 
and passes the data to the output buffers. The output buffers are 
powered from a separate supply, allowing adjustment of the 
output voltage swing. During power-down, the output buffers 
proceed into a high impedance state.  
ANALOG INPUT CONSIDERATIONS 
The analog input to the AD9233 is a differential switched 
capacitor SHA that has been designed for optimum 
performance while processing a differential input signal.  
The clock signal alternately switches the SHA between sample 
mode and hold mode (see Figure 36). When the SHA is 
switched into sample mode, the signal source must be capable 
of charging the sample capacitors and settling within one-half 
of a clock cycle. A small resistor in series with each input can 
help reduce the peak transient current required from the output 
stage of the driving source.  
A shunt capacitor can be placed across the inputs to provide 
dynamic charging currents. This passive network creates a low-
pass filter at the ADC input; therefore, the precise values are 
dependant upon the application.  
In IF undersampling applications, any shunt capacitors should 
be reduced. In combination with the driving source impedance, 
these capacitors limit the input bandwidth. See Application 
Notes 
Frequency Domain Response of Switched-
Capacitor ADCs, and 
A Resonant Approach To 
Interfacing Amplifiers to Switched-Capacitor ADCs, and the 
Analog Dialogue article, 
 for more information. 
 
VIN+
VIN–
C
PIN, PAR
C
PIN, PAR
C
S
C
S
C
H
C
H
H
S
S
S
S
05
49
2-
0
37
 
Figure 36. Switched-Capacitor SHA Input  
For best dynamic performance, the source impedances driving 
VIN+ and VIN− should match such that common-mode 
settling errors are symmetrical. These errors are reduced by the 
common-mode rejection of the ADC. 
An internal differential reference buffer creates two reference 
voltages used to define the input span of the ADC core. The 
span of the ADC core is set by the buffer to be 2 × VREF. The 
reference voltages are not available to the user. Two bypass 
points, REFT and REFB, are brought out for decoupling to 
reduce the noise contributed by the internal reference buffer. It 
is recommended that REFT be decoupled to REFB by a 0.1 μF 
capacitor, as described in the Layout Considerations section. 
Input Common Mode  
The analog inputs of the AD9233 are not internally dc-biased. 
In ac-coupled applications, the user must provide this bias 
externally. Setting the device such that V
CM
 = 0.55 × AVDD is 
recommended for optimum performance; however, the device 
functions over a wider range with reasonable performance (see 
Figure 32). An on-board common-mode voltage reference is 
included in the design and is available from the CML pin. 
Optimum performance is achieved when the common-mode 
voltage of the analog input is set by the CML pin voltage 
(typically 0.55 × AVDD). The CML pin must be decoupled to 
ground by a 0.1 μF capacitor, as described in the Layout 
Considerations secti
on. 
Differential Input Configurations 
Optimum performance is achieved by driving the AD9233 in a 
differential input configuration. For baseband applications, the 
 differential driver provides excellent performance and 
a flexible interface to the ADC. The output common-mode 
voltage of th
 is easily set with the CML pin of the 
AD9233 (see Figure 37), and the driver can be configured  
in a Sallen-Key filter topology to provide band limiting of the 
input signal.