STMicroelectronics A 200 W ripple-free input current PFC pre-regulator with the L6563S EVL6563S-200ZRC EVL6563S-200ZRC Fiche De Données

Codes de produits
EVL6563S-200ZRC
Page de 39
AN3180
Sensitivity of zero-ripple current condition
Doc ID 17273 Rev 1
11/39
   
   
   
If the attenuation A is defined as the ratio of the residual ripple di
2
(t)/dt, given by 
 
or 
to the ripple that would be there without the coupled inductor (di
1
(t)/dt =v
1
(t)/L
1
, equal 
to the actual ripple on the cancellation winding, as L
1
 is unchanged), it is possible to write for 
the worst case scenario:
Equation 10
where  
Δv(t) = v
2
(t)-v
1
(t) is the absolute voltage mismatch,  
δ = k n
e
 - 1 is the zero-ripple 
condition mismatch (absolute and relative values coincide) and the factor 
ρ is given by:
Equation 11
In 
 the attenuation A is plotted for different values of the relative voltage mismatch  
Δv(t)/v
1
(t) and of the coupling coefficient k, as a function of the zero-ripple condition. From 
the inspection of these plots, it is apparent that a low coupling coefficient is essential for a 
good attenuation even if the zero-ripple condition is not exactly met. To achieve attenuations 
always greater than 10-12 dB even with a tolerance of ±10 % on the value of 
δ and 10 % 
voltage mismatch, the coupling coefficient k must be around 0.7. Lower k values would lead 
to a higher insensitivity of the zero-ripple condition due to mismatches but lead to more 
turns for the DC winding, which could become an issue in terms of inductor construction.
Note that in case of under-compensation (
δ<0) the residual ripple can be higher than the 
original value: this is due to a too low value of the “residual” inductance L
2
 (1-k
2
).
Extending these concepts to the smoothing transformer of 
, where the voltage 
externally applied to the AC winding is affected by the voltage ripple on the capacitor C
S
 
(due to its finite capacitance value as well as its ESR), the voltage mismatch  
Δv(t)/v
1
(t) and, 
as a result, also the attenuation A, become frequency-dependent. Magnetic flux distribution 
modifications with frequency, which also affect 
δ, are a second-order effect and are 
neglected.
 
 and 
 provide a complete analysis of the smoothing transformer frequency 
behavior. Here it is convenient only to summarize the results:
1.
The smoothing transformer is capable of a third-order attenuation of current ripple, i.e. 
it is equivalent to an inductor combined with an additional LC filter
2. 
The transfer function generally includes three poles and two zeros; if the zero-ripple 
condition is fulfilled (
δ=0), the two zeros go to infinity and the smoothing transformer 
becomes a third-order all-pole filter
3. 
Modeling winding resistance and capacitor ESR produces a little damping of the pole-
zero resonances but do not significantly affect the imaginary component of their 
locations
4. 
The effect of the zero-ripple condition mismatch (
δ≠0) is to move the zero pair towards 
the poles, therefore creating some “notch” frequencies where greater attenuation is 
achieved, but degrading the overall attenuation produced at higher frequencies


δ
+
Δ
ρ
=
=
=
)
t
(
dt
)
t
(
d
)
t
(
L
dt
)
t
(
d
dt
)
t
(
d
1
1
2
1
1
2
v
v(t)
i
v
i
i
A
(
)
2
2
2
k
1
k
1
1
δ
+
=
ρ