STMicroelectronics A 200 W ripple-free input current PFC pre-regulator with the L6563S EVL6563S-200ZRC EVL6563S-200ZRC Fiche De Données

Codes de produits
EVL6563S-200ZRC
Page de 39
   
   
   
Basic topologies with zero-ripple current
AN3180
4/39
 Doc ID 17273 Rev 1
Basic topologies with zero-ripple current
Coupled magnetic devices have been around since the early days of electronics, and their 
application to power switching circuits dates back to the late 70's with the experiments on 
the Cuk converter, from which “magnetic integration” originated. With this technique, 
inductors and transformers are combined into a single physical structure to reduce the 
component count, usually with little or no penalty at all on the converter's characteristics, 
sometimes even enhancing its operation. During initial experiments on the Cuk converter 
the zero-ripple current phenomenon was first observed. The technique derived by the use of 
this phenomenon is known as ripple-steering or ripple cancellation. Besides providing an 
excellent discussion, also gives an interesting historical outline of the subject (see 
 
). The application of the zero-ripple current phenomenon is of considerable 
interest in switching converters, where there are at least two reasons why it is desirable to 
minimize inductor ripple currents. Firstly, lowering ripple current in inductors reduces the 
stress on converter capacitors, resulting in either lower associated power loss or more 
relaxed filtering requirements. Secondly, and often more importantly, most converter 
topologies have pulsating current at either input or output or both, and most applications 
require low conducted noise at both ports, because of EMC requirements or load 
requirements.
Figure 2.
Some basic topologies with zero-ripple current characteristics
This issue is commonly addressed with the use of additional LC filters, whose impact on 
both the overall converter size and cost is not at all negligible, not to mention their interaction 
with the small-signal dynamics which sometimes cause poor dynamic response issues or 
even stability issues. In particular, in offline converters, where EMC regulations specify limits 
to the amount of conducted and radiated emissions, a technique like ripple-steering which 
makes the input current non-pulsating or nearly so, therefore eliminating most of the 
differential mode conducted noise, is advantageous as it enables the reduction in EMI filter 
size and complexity, especially in its differential filtering section (Cx capacitors and 
differential mode inductors).
Reducing Cx capacitors to a minimum brings an additional benefit to applications with tight 
specifications on standby consumption: Cx capacitors cause a considerable reactive current 
to flow through the filter, which is a source of additional and unwanted loss (even 0.1 W or 
more at high line); furthermore, the discharge resistor which, for safety, must be placed in 
parallel to Cx can be higher. As a result, both losses are minimized.
!-V
9RXW
9LQ
)O\EDFNFRQYHUWHUZ LWKQRQSXOVDWLQJLQSXWFXUUHQW
9RXW
9LQ
%RRVWFRQYHUWHUZ LWKQRQSXOVDWLQJRXWSXWFXUUHQW
9RXW
9LQ
%RRVWFRQYHUWHUZ LWKQRQSXOVDWLQJLQSXWFXUUHQW
)O\EDFNFRQYHUWHUZ LWKQRQSXOVDWLQJRXWSXWFXUUHQW
9RXW
9LQ
)RUZ DUGFRQYHUWHUZ LWKQRQSXOVDWLQJLQSXWFXUUHQW
9RXW
9LQ
)RUZDUGFRQYHUWHUZ LWKQRQSXOVDWLQJRXWSXWFXUUHQW
9RXW
9LQ