STMicroelectronics 19V - 90W Adapter with PFC for Laptop computers using the L6563H and L6699 EVL6699-90WADP EVL6699-90WADP Fiche De Données

Codes de produits
EVL6699-90WADP
Page de 38
Capacitive-mode detection function
L6699
28/38
Doc ID 022835 Rev 2
Capacitive-mode detection function
Normally, the resonant half bridge converter operates with the resonant tank current lagging 
behind the square-wave voltage applied by the half bridge leg, like a circuit having a 
reactance of an inductive nature. In this way the applied voltage and the resonant current 
have the same sign at every transition of the half bridge, which is a necessary condition in 
order for soft-switching to occur (zero-voltage switching, ZVS at turn-on for both MOSFETs). 
Therefore, should the phase relationship reverse, i.e. the resonant tank current anticipates 
the applied voltage, like in circuits having a capacitive reactance, soft-switching would be 
lost. This is termed capacitive-mode operation and must be avoided because of its 
significant drawbacks:
1.
Both MOSFETs feature hard-switching at turn-on, like in conventional PWM-controlled 
converters (see 
). The associated capacitive losses may be considerably 
higher than the total power normally dissipated under “soft-switching” conditions and 
this may easily lead to their overheating, since heatsinking is not usually sized to 
handle this abnormal condition.
2. 
The body diode of the MOSFET just switched off conducts current during deadtime and 
its voltage is abruptly reversed by the other MOSFET turned on (see 
). 
Therefore, once reverse-biased, the conducting body diode keeps its low impedance 
until it recovers, therefore creating a condition equivalent to a shoot-through of the half 
bridge leg. This is a potentially destructive condition (see next point) and causes 
additional power dissipation due to the current and voltage of the conducting body 
diode simultaneously high during part of its recovery.
3. 
There is an extremely high reverse dv/dt (many tens of V/ns!) experienced by the 
conducting body diode at the end of its recovery with the other MOSFET turned on. 
This dv/dt may exceed the rating of the MOSFET and lead to an immediate failure 
because of the second breakdown of the parasitic BJT intrinsic in its structure. If a 
MOSFET is hot, the turn-on threshold of its parasitic BJT is lower, and dv/dt-induced 
failure is much more likely. The L6699 may be also damaged if its OUT pin is subject to 
a dv/dt exceeding the AMR (50 V/ns).
Figure 21.
Details of hard-switching transition during capacitive-mode operation