Emerson Transmitter LTM-300 Mode D’Emploi

Page de 20
The LTM-300 is an assembly of two major components:
• 
The Sensor Tube Assembly.  This a 5/8” diameter stainless steel probe, 
sealed on one end, with the magnetostrictive waveguide in its center.  
In addition to the magnetostrictive waveguide, the tube also houses 
the optional temperature sensor and the detector electronics.  The 
tube is made to lengths of 2-30 ft. in rigid construction.  
• 
The Electronics Housing.  The extruded aluminum housing has two 
separate compartments.  One side contains the microprocessor board 
assembly and calibration push buttons.  The other side contains the 
wiring termination board.  The electronics module is connected to 
the detector board of the sensor tube assembly via a plug-in cable.
The main board is surface mounted component construction utilizing 
the  latest  in  integrated  circuit  technology.    It  contains  a  high-speed 
micro controller with a HART modem, D/A Converters, A/D Converter 
(for optional temperature) and all other accessory components.
 
The  LTM-300  Level  Transmitter  is  based  on  the  principle  of 
magnetostriction  first  used  for  digital  delay  lines  and  later  for 
precision distance or displacement in the machine tool industry.  The 
principle,  if  designed  and  applied  properly,  has  potentially  very  high 
measurement  resolution,  typically  better  than  0.001  inch.    In  the 
machine tool industry such a high resolution is desirable.  In the liquid 
level  measurement  application,  however,  a  resolution  of  0.01  inch  is 
more that adequate.
In a brief description, the magnetostrictive principle consists of a 
wire extruded and heat treated under carefully chosen conditions 
to retain desired magnetic properties, which is pulsed by a circuit 
with a relatively high current pulse. The high current pulse produces 
a circular magnetic field as it travels down the wire at the speed of 
light.  Another magnetic field generated by a permanent magnet, 
placed near or around the wire at some distance from the point of 
entry of this pulse, interferes with the magnetic field of the pulse 
and torsional force results at the collision point.
 
SECTION 2.  Instrument Description
2.0 Transmitter Detailed Description
2.1 Theory of Operation
The effect of this torsion force is to twist the wire at this point 
producing a torsion wave traveling towards both ends of the wire.  
The propagation time of this wave is measured precisely and, if the 
wire properties remain stable, it is very repeatable at about 5-10 
microseconds per inch, which is approximately the speed of sound 
in that medium.  By measuring the exact number of microseconds it 
took the torsion wave to reach a designated termination point of the 
wire, the distance to the magnet from this termination point can be 
easily calculated. 
 
A high-speed micro controller is utilized in the design to process and 
calculate  the  elapsed  time  measurement.    Accurate  crystals  are  used 
for the time base to resolve sub-microsecond timing increments.  The 
binary number, equivalent to the microseconds of the echo travel time, 
is written to an output D/A Converter and subsequently converted to 
a  4-20  mA  signal  proportional  to  the  item  measured.   The  larger  the 
number  of  microseconds  there  are,  the  greater  the  distance  of  the 
float from the head of the transmitter.
Basic Level Transmitter Simplified Block Diagram
Facilities are provided to field calibrate the range of the 4-20 mA 
output using the actual position of the float and pressing a push-
button on the front panel to set the 4-20 mA point.  
2
Calibration  routines  are  included  in  the  software  to  scale  the  4  and 
20  mA  points  for  any  distance  desired.    Even  reverse  calibration  is 
a  simple  task  using  the  software  routines.    Reverse  calibration  is 
desirable  if  ullage  instead  of  full  level  is  required,  or  when  the  probe 
is  installed  with  bottom  mount  head.    See  Section  on  Calibration  for 
further details.    
The LTM-300 transmitter can have as many as three outputs.  The first is a 
4-20 mA output, the second and third are digital outputs.  The LTM-300 is 
available with the following output configurations:
All LTM-300 Units have HART as a standard.
 
1.  Primary  Level.    Single  output  version  with  only  one 
variable that will output a 4-20mA signal for level.   
2.  The second and third outputs are digital and can be 
configured to measure temperature and/or interface 
level.  The digital outputs are read via HART.
1.  Primary  Level  Transmitter.    The  most  basic  version  of  this 
transmitter, is that it computes the distance between the float and 
the detector from the elapsed time measurement.  A specific time 
window becomes active only for a short time after the interrogation 
pulse is applied to the waveguide.  Any feedback signal, received 
before  and  after  this  window,  is  rejected  as  noise.    Even  signals 
received  during  the  active  window  are  evaluated  and  filtered  so 
that only high integrity data is accepted.   
The  conditioned  signal  is  converted  to  a  percent  of  full-scale 
number and written to the D/A Converter.  The scale is defined by 
the calibration procedure and it corresponds to the output span (4-
20mA) of 16.00 mA.
A deadband, corresponding to approximately six inches next to 
the detector, is fixed in the software and the float is not permitted 
to enter this area.  If this happens, readings may be erratic or the 
output may go to FAIL.
Provision,  accessed  through  HART  or  front  panal,  is  made  for 
a  FAIL  mode  to  High  (20.8  mA),  Low  (3.75  mA)  or “Hold  last 
Value.”
A  HART  modem  enables  the  transmitter  to  communicate  serially 
over the 4-20 mA DC signal with a host computer or a handheld 
terminal.  
2.  Level/Temperature.  An optional temperature sensor is embedded 
inside the bottom tip of the probe, and it can be calibrated to give 
the  temperature  of  the  liquid  in  the  tank  on  the  second  or  third 
The sensor is a 1000 ohm platinum RTD type and its 
resistance is converted to a binary signal by a high resolution 
A/D Converter.  The temperature range is set to order and 
stored in non-volatile memory before shipment.