Analog Devices AD604 Manuel D’Utilisation

Page de 32
 
AD604
 
Rev. E | Page 15 of 32 
12
11
10
A unique circuit technique is used to interpolate continuously 
among the tap points, thereby providing continuous attenuation 
from 0 dB to −48.36 dB. The ladder network, together with the 
interpolation mechanism, can be considered a voltage-controlled 
potentiometer. 
The larger portion of the input referred voltage noise comes 
from the amplifier with 0.63 nV/√Hz. The current noise is 
independent of gain and depends only on the bias current in  
the input stage of the preamplifier, which is 3 pA/√Hz. 
The preamplifier can drive 40 Ω (the nominal feedback resistors) 
and the following 175 Ω ladder load of the DSX with low 
distortion. For example, at 10 MHz and 1 V at the output, the 
preamplifier has less than −45 dB of second and third harmonic 
distortion when driven from a low (25 Ω) source resistance.  
Because the DSX circuit uses a single voltage power supply, the 
input biasing is provided by the VOCM buffer driving the MID 
node (see Figure 41). Without internal biasing, the user would 
have to dc bias the inputs externally. If not done carefully, the 
biasing network can introduce additional noise and offsets. By 
providing internal biasing, the user is relieved of this task and 
only needs to ac-couple the signal into the DSX. Note that the 
input to the DSX is still fully differential if driven differentially; 
that is, Pin +DSXx and Pin −DSXx see the same signal but with 
opposite polarity (see the Ultralow Noise, Differential Input-
Differential Output VGA
 section).  
In applications that require more than 48 dB of gain range, two 
AD604 channels can be cascaded. Because the preamplifier has 
a limited input signal range and consumes over half (120 mW) 
of the total power (220 mW), and its ultralow noise is not necessary 
after the first AD604 channel, a shutdown mechanism that 
disables only the preamplifier is provided. To shut down the 
preamplifier, connect the COM1 pin and/or COM2 pin to the 
positive supply; the DSX is unaffected. For additional details, 
refer to the Applications Information section. 
What changes is the load seen by the driver; it is 175 Ω when 
each input is driven single-ended but 350 Ω when driven 
differentially. This is easily explained by thinking of the ladder 
network as two 175 Ω resistors connected back-to-back with 
the middle node, MID, being biased by the VOCM buffer. A 
differential signal applied between the +DSXx and −DSXx 
nodes results in zero current into the MID node, but a single-
ended signal applied to either input, +DSXx or –DSXx, while 
the other input is ac-grounded causes the current delivered by 
the source to flow into the VOCM buffer via the MID node.  
9
8
1
2
3
4
7
6
5
13
15
14
16
24
23
22
21
20
19
18
17
AD604
–DSX1
+DSX1
PAI1
FBK1
PAO1
COM1
COM2
PAI2
FBK2
VGN1
VREF
VPOS
GND1
OUT1
VNEG
VNEG
VPOS
GND2
PAO2
+DSX2
–DSX2
OUT2
VOCM
VGN2
The ladder resistor value of 175 Ω provides the optimum 
balance between the load driving capability of the preamplifier 
and the noise contribution of the resistors. An advantage of the 
X-AMP architecture is that the output referred noise is constant 
vs. gain over most of the gain range. Figure 41 shows that the 
tap resistance is equal for all taps after only a few taps away 
from the inputs. The resistance seen looking into each tap is 
54.4 Ω, which makes 0.95 nV/√Hz of Johnson noise spectral 
density. Because there are two attenuators, the overall noise 
contribution of the ladder network is √2 times 0.95 nV/√Hz  
or 1.34 nV/√Hz, a large fraction of the total DSX noise. The 
balance of the DSX circuit components contributes another 
1.2 nV/√Hz, which together with the attenuator produces 
1.8 nV/√Hz of total DSX input referred noise. 
00
54
0-
04
0
 
Figure 40. Shutdown of Preamplifiers Only 
DIFFERENTIAL LADDER (ATTENUATOR) 
The attenuator before the fixed-gain amplifier of the DSX is 
realized by a differential 7-stage R-1.5R resistive ladder network 
with an untrimmed input resistance of 175 Ω single-ended or 
350 Ω differential. The signal applied at the input of the ladder 
network is attenuated by 6.908 dB per tap; thus, the attenuation 
at the first tap is 0 dB, at the second, 13.816 dB, and so on, all 
the way to the last tap where the attenuation is 48.356 dB  
(see Figure 41).  
 
R
R
–6.908dB
1.5R
R
R
–13.82dB
R
R
R
R
R
R
R
R
R
R
–20.72dB
–27.63dB
–34.54dB
–41.45dB
–48.36dB
+DSXx
MID
–DSXx
NOTES
1. R = 96Ω
2. 1.5R = 144Ω
1.5R
1.5R
1.5R
1.5R
1.5R
1.5R
1.5R
1.5R
1.5R
1.5R
1.5R
1.5R
175Ω
1.5R
175Ω
00
54
0-
04
1
 
Figure 41. R-1.5R Dual Ladder Network 
 
 
 
 
www.BDTIC.com/ADI