Analog Devices AD604 Manuel D’Utilisation

Page de 32
AD604 
 
Rev. E | Page 18 of 32 
12
APPLICATIONS INFORMATION 
The basic circuit in Figure 43 shows the connections for one 
channel of the AD604. The signal is applied at Pin 5. RGN is 
normally 0, in which case the preamplifier is set to a gain of 5 
(14 dB). When FBK1 is left open, the preamplifier is set to a 
gain of 10 (20 dB), and the gain range shifts up by 6 dB. The ac 
coupling capacitors before −DSX1 and +DSX1 should be selected 
according to the required lower cutoff frequency. In this example, 
the 0.1 μF capacitors, together with the 175 Ω seen looking into 
each of the DSXx input pins, provide a −3 dB high-pass corner 
of about 9.1 kHz. The upper cutoff frequency is determined by 
the bandwidth of the channel, which is 40 MHz. Note that the 
signal can be simply inverted by connecting the output of the 
preamplifier to −DSX1 instead of +DSX1; this is due to the fully 
differential input of the DSX. 
11
10
9
8
1
2
3
4
7
6
5
13
16
15
14
24
23
22
21
20
19
18
17
AD604
VGN
RGN
+2.5V
+5V
–5V
OUT
–DSX1
+DSX1
PAI1
FBK1
PAO1
COM1
COM2
PAI2
FBK2
PAO2
+DSX2
VGN1
VREF
VPOS
GND1
OUT1
VNEG
VNEG
VPOS
GND2
OUT2
VOCM
0.1µF
0.1µF
V
IN
0.1µF
R
L
500Ω
3
–DSX2
VGN2
0.1µF
00
54
0-
04
 
Figure 43. Basic Connections for a Single Channel 
In Figure 43, the output is ac-coupled for optimum performance. 
For dc coupling, as shown in Figure 52, the capacitor can be 
eliminated if VOCM is biased at the same 3.3 V common-mode 
voltage as the analog-to-digital converter, 
VREF requires a voltage of 1.25 V to 2.5 V, with between 40 dB/V 
and 20 dB/V gain scaling, respectively. Voltage VGN controls 
the gain; its nominal operating range is from 0.25 V to 2.65 V 
for 20 dB/V gain scaling and 0.125 V to 1.325 V for 40 dB/V 
scaling. When VGNx is grounded, the channel powers down 
and disables its output. 
COM1 is the main signal ground for the preamplifier and needs 
to be connected with as short a connection as possible to the input 
ground. Because the internal feedback resistors of the preamplifier 
are very small for noise reasons (8 Ω and 32 Ω nominally), it is 
of utmost importance to keep the resistance in this connection 
to a minimum. Furthermore, excessive inductance in this 
connection can lead to oscillations. 
Because of the ultralow noise and wide bandwidth of the 
AD604, large dynamic currents flow to and from the power 
supply. To ensure the stability of the part, careful attention to 
supply decoupling is required. A large storage capacitor in 
parallel with a smaller high-frequency capacitor connected at 
the supply pins, together with a ferrite bead coming from the 
supply, should be used to ensure high-frequency stability. 
To provide for additional flexibility, COM1 can be used to 
disable the preamplifier. When COM1 is connected to VP, the 
preamplifier is off, yet the DSX portion can be used independently. 
This may be of value when cascading the two DSX stages in the 
AD604. In this case, the first DSX output signal with respect to 
noise is large and using the second preamplifier at this point 
would waste power (see Figure 44). 
 
 
www.BDTIC.com/ADI