Delta Electronics VFDB Series Dépliant

Pagina di 2
NOTE
 
 
Before regulating the power voltage, make 
sure the power has been turned off. Please set 
power voltage as the possible highest voltage 
for unstable power system. Take 380VAC 
power system for example. If the voltage may 
be up to 410Vac, 415VAC should be regulated.
 
For DELTA’s AC motor drive VFD Series, 
please set parameter (Over Voltage Stall 
Prevention) as “close” to disable over-voltage 
stall prevention, to ensure stable deceleration 
characteristic. For VFDB-5055, the jumper 
can only be put on the position as shown in the 
following figure. Do NOT remove the jumper 
to other place.
 
 
2007-07-19
5011628404-BM04
 
VFDB Series
 
Braking Modules Instruction Sheet
 
X
Preface 
Thank you for choosing DELTA’s braking module. VFDB braking units are applied to absorb the motor regeneration energy when the 
three-phase induction motor stops by deceleration. With VFDB braking unit, the regeneration energy will be dissipated in dedicated 
braking resistors. To prevent mechanical or human injury, please refer to this instruction sheet before wiring. VFDB braking units are 
suitable for DELTA AC Motor Drives VFD Series 230V/460V/575V. VFDB braking units need to be used in conjunction with BR series 
braking resistors to provide the optimum braking characteristics. VFDB braking units (2015, 2022, 4030, 4045 and 5055) are approved 
by Underwriters Laboratories, Inc. (UL) and Canadian Underwriters Laboratories (cUL). The content of this instruction sheet may be 
revised without prior notice. Please consult our distributors or download the most updated version at 
http://www.delta.com.tw/industrialautomation.
 
Y
Specifications 
VFDB Braking Units 
Braking Resistors
 
Specification 
230V Series 
460V Series 
575V Series 
 
Model no. 
Specification 
Model VFDB- 
2015 
2022 
4030 
4045 
5055 
 
BR1K5W005 
1500W 5.0Ω 
Max. Motor Capacity (KW) 
15 
22 
30 
45 
55 
 
BR1K2W6P8 
1200W 6.8Ω 
Max. Discharge Current 
(A) 10%ED 
40 60  40  60 
60 
 
BR1K2W008 
1200W 8.0Ω 
Continuous Discharge 
Current (A) 
15 20  15  18 
20 
 
BR1K5W040 
1500W 40Ω 
O
ut
put
 R
at
ing 
Braking Start-up Voltage 
(DC) 
330/345/360/380/400/
415±3V 
660/690/720/760/800/
830±6V 
950±8V 
 
BR1K0W050 
1000W 50Ω 
Input
 
R
at
ing 
DC Voltage 
200—400VDC 400—800VDC 
607-1000VDC 
 
BR1K0W075 
1000W 75Ω 
Min. Equivalent Resistor for Each 
Braking Unit 
10Ω 6.8Ω 20Ω 13.6Ω 15.8Ω 
 
Heat Sink Overheat 
Temperature over +95℃ (203
o
F) 
 
Alarm Output 
Relay contact 5A120VAC/28VDC (RA, RB, RC) 
 
P
rot
ect
ion 
Power Charge Display 
Blackout until bus (+~-) voltage is below 50VDC 
 
Installation Location 
Indoor (no corrosive gases, metallic dust) 
 
Operating Temperature 
-10℃~+50℃ (14
o
F to 122
o
F) 
 
Storage Temperature 
-20℃~+60℃ (-4
o
F to 140
o
F) 
 
Humidity 90% 
Non-condensing 
 
Envi
ronment
 
Vibration 
9.8m/s
(1G) under 20Hz 
2m/s
(0.2G) at 20~50Hz 
 
Mechanical Configuration
 
Wall-mounted enclosed type IP50 
 
Z
Dimensions   
Braking Resistors
 
 
 
Z
Dimensions - 
VFDB Braking Units
 
[
Individual Parts and 
Function Explanation
 
80.0 [3.15]
121.0 [4.76]
18
9.
5 [7
.4
6]
20
0.
0 [7
.8
7]
130.0 [5.12]
R3.3 [R0.13]
ACT.
YELLOW
CHARGE
GREEN
ERR.
RED
 
Power Input Circuit
+(P) -(N)
Braking Resistor
B1 B2
SLAVE  Circuit
 Fault Circuit
Jumper for input 
voltage setting
Terminal Wire Gauge
 
Circuit 
Terminal Mark 
Wire Gauge AWG (mm
2
Screw 
Torque 
Power Input Circuit 
+(P), -(N) 
10~12AWG (3.5~5.5mm
2
M4 
18 kgf-cm (15.6 in-lbf) 
Braking Resistor 
B1, B2 
10~12AWG (3.5~5.5mm
2
M4 
18 kgf-cm (15.6 in-lbf) 
Output M1, 
M2 
SLAVE Circuit 
Input S1, 
S2 
20~18AWG (0.25~0.75mm
2
)
 
(with shielded wires)
 
M2 
4 kgf-cm (3 in-lbf) 
Fault Circuit 
RA, RB, RC 
20~18AWG (0.25~0.75mm
2
)
 
M2 
4 kgf-cm (3 in-lbf) 
\
Basic Wiring Diagram 
Operation Explanation:
 
1. For safety consideration, install an overload relay between the braking unit and the braking resistor. In 
conjunction with the magnetic contactor (MC) prior to the drive, it can perform complete protection against abnormality.
 
2. The purpose of installing the thermal overload relay is to protect the braking resistor from damage due to frequent braking, or due to 
braking unit keeping operating resulted from unusual high input voltage. Under such circumstance, just turn off the power to prevent 
damaging the braking resistor. 
3. Please refer to the specification of the thermal overload relay. 
4. The alarm output terminals (RC, RA, RB) of the braking unit will be activated when the temperature of the heat sink exceeds 95
o
C. It 
means that the temperature of the installation environment may exceed 50
o
C, or the braking %ED may exceed 10%ED. With this kind 
of alarm, please install a fan to force air-cooling or reduce the environment temperature. If the condition not due to the temperature, 
the control circuit or the temperature sensor may have been damaged. At this time, please send the braking unit back to the 
manufacturer or agency for repair. 
R/L1
S/L2
T/L3
NFB
MC
 VFD
Series
VFDB
MOTOR
O.L.
U/T1
V/T2
W/T3
+ P
- N
( )
( )
B1
B2
RA
RC
E.F
DCM
SA
R/L1
S/L2
T/L3
MC
IM
BR
O.L.
Thermal
Overload
Relay or
temperature
switch
Surge
Absorber
Thermal Overload
Relay
Braking
Resistor
Braking
  Unit
+ P
- N
( )
( )
Note1: When using the AC drive with DC reactor, please refer to wiring diagram in the AC drive
            user manual for the wiring of terminal +(P) of Braking unit. 
Note2: 
 wire terminal -(N) to the neutral point of power system.
Do NOT
Temperature
Switch
 
5. The AC Motor Drive and braking 
unit will be electrified at the same time 
while turning on the NFB (No-fuse 
breaker). For the operation/stop 
method of the motor, please refer to the 
user manual of the AC Motor Drives 
VFD Series. The braking unit will 
detect the inner DC voltage of the AC 
motor drive when it stops the motor by 
deceleration. The extra regeneration 
will be dissipated away rapidly by the 
braking resistor in the form of heat. It 
can ensure the stable deceleration 
characteristic.
 
6. Besides using thermal overload relay to be the protection system and braking resistor, temperature switch can be installed on braking 
resistor side as the protection. The temperature switch must comply with the braking resistor specification or contact your dealer. 
]
Wiring Notice 
 
 
Do not proceed with wiring while power is applied to the circuit.   
 
The wiring gauge and distance must comply with the electrical code. 
 
The +(P), -(N) terminals of the AC motor drive (VFD Series), connected to the braking unit (VFDB), must be confirmed 
for correct polarity lest the drive and the braking unit be damaged when power on. 
 
When the braking unit performs braking, the wires connected to +(P), -(N), B1 and B2 would generate a powerful 
electromagnetic field for a moment due to high current passing through. These wires should be wired separately from 
other low voltage control circuits lest they make interference or mis-operation. 
 
Wiring distance 
VFD series
15~55kW
230/460/
575V
Max 10M
Max 5M
BR
VFDB
2015
2022
4030
4045
5055
AC Motor Drive
Braking Unit
Braking Resistor
 
 
To prevent personal injury, do not connect/disconnect wires or 
regulate the setting of the braking unit while power on. Do not touch 
the terminals of related wiring and any component on PCB lest users 
be damaged by extreme dangerous DC high voltage. 
 
Inflammable solids, gases or liquids must be avoided at the 
location where the braking resistor is installed. The braking 
resistor had better be installed in individual metallic box with 
forced air-cooling. 
 
Connect the ground terminal to the Earth Ground. The ground 
lead must be at least the same gauge wire as leads +(P), -(N).
 
Please install the braking resistor with forced air-cooling or 
the equivalent when frequent deceleration braking is 
performed (over 10%ED). 
 
The ring terminals are suggested to be used for main circuit 
wiring. Make sure the terminals are fastened before power on.
^
Definition for Braking Usage ED% 
100%
T0
T1
Braking Time
Cycle Time
ED% = T1/T0x100(%)
 
Explanation: The definition of the barking usage ED(%) is for assurance of 
enough time for the braking unit and braking resistor to dissipate away heat 
generated by braking. When the braking resistor heats up, the resistance would 
increase with temperature, and braking torque would decrease accordingly. 
_
The Voltage Settings 
1. 
Regulation of power voltage: the power source of the braking unit is DC voltage from +(P), -(N) terminals of the AC motor drive. It is 
very important to set the power voltage of the braking unit based on the input power of the AC motor drive before operation. The setting 
has a great influence on the potential of the operation voltage for the braking unit. Please refer to the table below. 
Table 1: The Selection of Power Voltage and Operation Potential of PN DC Voltage 
230V Model 
AC Power 
Voltage 
Braking Start-up voltage 
DC Bus (+(P), -(N)) Voltage
460V Model 
AC Power 
Voltage 
Braking Start-up voltage 
DC Bus (+(P), -(N)) Voltage
575V Model 
AC Power 
Voltage 
Braking Start-up voltage 
DC Bus (+(P), -(N)) Voltage
190Vac 
330Vdc 
380Vac 
660Vdc 
575Vac 
950Vdc 
200Vac 
345Vdc 
400Vac 
690Vdc 
210Vac 
360Vdc 
415Vac 
720Vdc 
220Vac 
380Vdc 
440Vac 
760Vdc 
230Vac 
400Vdc 
460Vac 
800Vdc 
240Vac 
415Vdc 
480Vac 
830Vdc 
NOTE: Input Power With Tolerance  ±10%
 
Input voltage setting for VFDB-2015/2022/4030/4045
 
Input voltage setting for VFDB-5055
 
For VFDB-4030/4045
Factory setting: 460V
For VFDB-2015/2022
Factory setting: 230V
480V
460V
440V
415V
400V
380V
240V
230V
220V
210V
200V
190V
Input Voltage Setting
CHARGE
Power lamp
ACT
Braking lamp
ERR
Fault lamp
 
For VFDB-5055 Series
Factory setting: 575V
------
575V
------
------
------
------
Input Voltage Setting
CHARGE
Power lamp
ACT
Braking lamp
ERR
Fault lamp
2.  MASTER/SLAVE setting: The MASTER/SLAVE jumper is set “MASTER” as factory setting. The “SLAVE” setting is applied to two 
or more braking units in parallel, making these braking units be enabled/disabled synchronously. Then the power dissipation of each unit 
will be equivalent so that they can perform the braking function completely. 
The position of the jumper
 
The SLAVE braking application of three braking units is 
shown as the above diagram. After wiring, the jumper of 
first unit shall be set as “MASTER” and that of others must 
be set as “SLAVE” to complete the system installation.
 
+ P
- N
( )         
( )
  VFD 
Series
M1
M2
MASTER
B1       B2
O.L.
M1
M2
B1       B2
O.L.
S1
S2
B1       B2
O.L.
S1
S2
SLAVE
SLAVE
BR
BR
BR
+ P
- N
( )         
( )
+ P
- N
( )         
( )
+ P
- N
( )         
( )
 
------
575V
------
------
------
------
240V
230V
220V
210V
200V
190V
MASTER/SLAVE
Setting Jumper
M1: 
M2: 
S1: 
S2: 
SLAVE output signal +
SLAVE output signal -
SLAVE input signal +
SLAVE input signal -
NOTE: Please use shielded wires
             while wiring.
Slave 
output/input
Terminal
Alarm output terminals
M
2
M
1
S
2
S
1
RC
RB
RA
MASTER
SLAVE
CHARGE
Power lamp
ACT
Braking lamp
ERR
Fault lamp
480V
460V
440V
415V
400V
380V
 
`
All Braking Resistors & Braking Units Use in the AC Drives 
Applicable 
Motor 
V
olta
ge
 
HP 
kW 
Full- load 
Torque 
kg-M 
Resistor Value 
Spec for Each 
AC Motor Drive 
Braking Unit 
Model VFDB 
No. of Units 
Used 
Braking Resistors 
Model and No. of Units 
Used 
Braking 
Torque
10%ED
Min. 
Equivalent 
Resistor Value 
for Each AC 
Motor Drive
Typical 
Thermal 
Overload 
Relay Value
20 
15 
8.248 
3000W 10Ω 
2015 
BR1K5W005 
2
125 
10Ω 
30 
25 
18.5 
10.281 
4800W 8Ω 
2022 
BR1K2W008 
4
125 
8Ω 
35 
30 
22 
12.338 
4800W 6.8Ω 
2022 
BR1K2W6P8 
4
125 
6.8Ω 
40 
40 
30 
16.497 
6000W 5Ω 
2015 
BR1K5W005 
4
125 
5Ω 
30 
230V 
 
50 
37 
20.6 
9600W 4Ω 
2015 
BR1K2W008 
8
125 
4Ω 
30 
20 
15 
8.248 
1500W 40Ω 
4030 
BR1K5W040 
1
125 
40Ω 
15 
25 
18.5 
10.281 
4800W 32Ω 
4030 
BR1K2W008 
4
125 
32Ω 
15 
30 
22 
12.338 
4800W 27.2Ω 
4030 
BR1K2W6P8 
4
125 
27.2Ω 
20 
40 
30 
16.497 
6000W 20Ω 
4030 
BR1K5W005 
4
125 
20Ω 
30 
50 
37 
20.6 
9600W 16Ω 
4045 
BR1K2W008 
8
125 
16Ω 
40 
60 
45 
24.745 
9600W 13.6Ω 
4045 
BR1K2W6P8 
8
125 
13.6Ω 
50 
75 
55 
31.11 
12000W 10Ω 
4030 
BR1K5W005 
8
125 
10Ω 
30 
460V 
 
100 
75 
42.7 
19200W 6.8Ω 
4045 
BR1K2W6P8 
16
125 
6.8Ω 
50 
20 
15 
8.248 
3000W 60Ω 
5055 
BR1K0W020 
3
125 
60Ω 
15 
25 
18.5 
10.281 
4000W 50Ω 
5055 
BR1K0W050 
4
125 
50Ω 
15 
30 
22 
12.338 
6000W 40Ω 
5055 
BR1K2W008 
5
125 
40Ω 
20 
40 
30 
16.497 
6000W 34Ω 
5055 
BR1K2W6P8 
5
125 
34Ω 
25 
50 
37 
20.6 
7500W 25Ω 
5055 
BR1K5W005 
5
125 
25Ω 
30 
60 
45 
24.745 
12000W 20Ω 
5055 
BR1K2W008 
10
125 
20Ω 
35 
75 
55 
31.11 
12000W 17Ω 
5055 
BR1K2W6P8 
10
125 
17Ω 
45 
575V 
 
100 
75 
42.7 
15000W 12.5Ω 
5055 
BR1K5W005 
10
125 
12.5Ω 
45 
a
Wiring Examples of Braking Resistors 
NOTE: Before wiring, please notice equivalent resistors value shown in the column “Equivalent resistors specification for each braking 
unit” in the above table to prevent damage. 
 
230V 20HP 
  VFD 
Series
O.L.
B1
B2
Braking
   Unit
VFDB
2015
Thermal Overload
Relay
VFD150_23_
VFD150_23_ uses with 2PCS BR1K5W005 braking resistors in series
+ P
- N
( )
( )
Braking
Resistor
+ P
- N
( )
( )
MASTER
 
230V 25HP/30HP 
+ P
- N
( )
( )
O.L.
Braking 
Resistor
B1
B2
Braking
   Unit
VFDB
2022
Thermal Overload
Relay
VFD185_23_
VFD220_23_
1. VFD185_23_ uses with two BR sets in parallel, which 2PCS BR1K2W008 braking resistors
    in series for each BR set.
2. VFD220_23_ uses with two BR sets in parallel, which 2PCS BR1K2W6P8 braking resistors 
   in series for each BR set.
  VFD
Series
+ P
- N
( )
( )
+ P
- N
( )
( )
MASTER
 
230V 40HP 
O.L.
B1
B2
Braking
   Unit
VFDB
2015
VFD300_23_
VFD300_23_ use with two VFDB2015 braking units, and each braking unit uses with
2PCS BR1K5W005 braking resistors in series.
SLAVE
S1 S2
O.L.
Braking
Resistor
B1
B2
Braking
   Unit
VFDB
2015
Thermal Overload Relay
M1 M2
MASTER
  VFD
Series
+ P - N
( )  ( )
Thermal Overload Relay
Braking
Resistor
+ P - N
( )  ( )
+ P - N
( )  ( )
 
230V 50HP 
O.L.
B1
B2
Braking
  Unit
VFDB
2015
VFD370_23_
SLAVE
S1 S2
O.L.
Braking
Resistor
B1
B2
Braking
   Unit
VFDB
2015
Thermal Overload Relay
M1 M2
MASTER
  VFD
Series
+ P - N
( )  ( )
Thermal Overload Relay
Braking
Resistor
+ P - N
( )  ( )
+ P - N
( )  ( )
VFD370_23_ uses with two VFDB2015 braking units, and each braking unit uses with two
BR sets in parallel, which 2PCS BR1K2W008 braking resistors in series.
 
460V 20HP 
O.L.
Braking 
Resistor
B1
B2
Braking
   Unit
VFDB
4030
Thermal Overload
Relay 
VFD150_43_
VFD150_43_ uses with 
BR1K5W040 
1PCS braking 
resistor
+ P
- N
( )
( )
  VFD
Series
+ P
- N
( )
( )
MASTER
 
460V 25HP/30HP/40HP 
O.L.
Braking
  Unit
B1
B2
Braking
    Unit
VFDB
4030
Thermal Overload
Relay
VFD185_43_
VFD220_43_
VFD300_43_
1. VFD185_43_ uses with 
BR1K2W008 braking resistors in series
2. VFD220_43_ uses 
BR1K2W6P8 
3. VFD300_43_ uses 
BR1K5W005 
4PCS 
with 4PCS 
braking resistors in series
with 4PCS 
braking resistors in series
 VFD
Series
+ P
- N
( )
( )
+ P
- N
( )
( )
MASTER
 
460V 50HP/60HP 
O.L.
Braking
Resistor
B1
B2
Braking
   Unit
VFDB
4045
Thermal Overload
Relay
VFD370_43_
VFD450_43_
1. VFD370_43_ uses with two BR sets in parallel, which 4PCS BR1K2W008 
    braking resistors in series for each BR set.
VFD450_43_ uses with two BR sets in parallel, which 4PCS BR1K2W6P8 
    braking resistors in series for each BR set. 
 
2. 
  VFD
Series
+ P
- N
( )
( )
+ P
- N
( )
( )
MASTER
 
460V 75HP 
O.L.
B1
B2
Braking
  Unit
VFDB
4030
VFD550_43_
VFD550_43_ uses with two VFDB4030 braking units, and each braking unit uses with 
4PCS BR1K5W005 braking resistors in series.
SLAVE
S1 S2
O.L.
Braking Resistor
B1
B2
Braking
   Unit
VFDB
4030
Thermal Overload Relay
M1 M2
MASTER
  VFD
Series
+ P - N
( )  ( )
Thermal Overload Relay
Braking Resistor
+ P - N
( )  ( )
+ P - N
( )  ( )
 
460V 100HP 
O.L.
B1
B2
Braking
   Unit
VFDB
4045
VFD750_43_
SLAVE
S1 S2
O.L.
Braking
Resistor
B1
B2
Braking
   Unit
VFDB
4045
Thermal Overload Relay
M1 M2
MASTER
  VFD
Series
+ P - N
( )  ( )
Thermal Overload Relay
Braking
Resistor
+ P - N
( )  ( )
+ P - N
( )  ( )
VFD750_43_ uses with two VFDB4045 braking units, and each braking unit uses with two
BR sets in parallel, which 4PCS BR1K2W6P8 braking resistors in series.
 
575V 20HP 
VFD150_53_ uses with 3PCS BR1K0W020 braking resistors in series
O.L.
Braking
Resistor
B1
B2
Braking Unit
VFDB
5055
Thermal Overload
Relay
VFD150_53_
VFDSeries
+(P)
-(N)
+(P)
-(N)
MASTER
 
575V 25HP 
O.L.
Braking
resistor
B1
B2
Braking
    Unit
VFDB
5055
Thermal Overload
Relay
VFD185_53_
VFD185_53_ uses with 5
BR1K0W050 braking resistors in series
PCS 
  VFD
Series
+ P
- N
( )
( )
+ P
- N
( )
( )
MASTER
 
575V 30HP/40HP/50HP 
1. VFD220_53_ uses with 5PCS BR1K2W008 braking resistors in series
2. VFD300_53_ 
3. 
uses with 5PCS BR1K2W6P8 braking resistors in series
VFD370_53_ uses with 5PCS BR1K5W005 braking resistors in series
O.L.
Braking
Resistor
B1
B2
Braking Unit
VFDB
5055
Thermal Overload
Relay
VFD220_53_
VFD300_53_
VFD370_53_
VFDSeries
+(P)
-(N)
+(P)
-(N)
MASTER
 
575V 60HP/75HP 
1. VFD450_53_ uses with two BR sets in parallel, which 5PCS BR1K2W008 braking resistors 
    in series for each BR set
2. VFD550_53_ uses with two BR sets in parallel, which 5PCS BR1K2W6P8 braking resistors
   in series for each BR set
O.L.
Braking
Resistor
B1
B2
Braking Unit
VFDB
5055
Thermal Overload
Relay
VFD450_53_
VFD550_53_
VFDSeries
+(P)
-(N)
+(P)
-(N)
MASTER
 
575V 100HP 
VFD750_53_
B1
B2
VFDB
5055
M1 M2
MASTER
VFD750_53_uses with two VFDB5055 braking units, and each braking unit uses with 
5PCS BR1K5W005 braking resistors in series.
VFD
Series
+(P) -(N)
+(P) -(N)
O.L.
Thermal Overload
Relay
Thermal Overload
Relay
Braking
Resistor
Braking Unit
Braking
Resistor
B1
B2
VFDB
5055
SLAVE
S1 S2
+(P) -(N)
O.L.
Braking Unit