Intel 200 ユーザーズマニュアル

ページ / 53
 
Processor Thermal/Mechanical Information 
 
 
Thermal and Mechanical Design Guidelines 
 19 
2.2.1 
Processor Junction Temperature 
Table 2.  Thermal Specifications for Intel
®
 Celeron
®
 Processor 200 Sequence  
Symbol 
Processor 
Number 
Core 
Frequency 
and 
Voltage 
Cache 
Thermal Design 
Power  
(W) 
Notes 
TDP 
220 
1.20 GHz 
512 KB 
19 
1, 4, 
Symbol Parameter Min 
Max  Notes 
 
T
J
 (°C) 
Junction Temperature 
0 °C 
100 °C 
NOTE:   
1. 
The TDP is not the maximum theoretical power the processor can generate. 
2. 
Not 100% tested. These power specifications are determined by characterization of the 
processor currents at higher temperatures and extrapolating the values for the 
temperature indicated. 
3. 
As measured by the activation of the on-die Intel
®
 Thermal Monitor. The Intel Thermal 
Monitor’s automatic mode is used to indicate that the maximum T
J
 
has been reached.  
Refer to datasheet for more details. 
4. 
The Intel Thermal Monitor automatic mode must be enabled for the processor to 
operate within specifications, please refer to datasheet for more details. 
5. 
At T
J
 of 100 °C.  
2.3 
Heatsink Design Considerations 
To remove the heat from the processor, three basic parameters should be considered:  
•  The area of the surface on which the heat transfer takes place.  Without 
any enhancements, this is the surface of the processor die.  One method used to 
improve thermal performance is by attaching a heatsink to the die.  A heatsink 
can increase the effective heat transfer surface area by conducting heat out of the 
die and into the surrounding air through fins attached to the heatsink base.  
•  The conduction path from the heat source to the heatsink fins.  Providing a 
direct conduction path from the heat source to the heatsink fins and selecting 
materials with higher thermal conductivity typically improves heatsink 
performance.  The length, thickness, and conductivity of the conduction path from 
the heat source to the fins directly impact the thermal performance of the 
heatsink.  In particular, the quality of the contact between the package die and 
the heatsink base has a higher impact on the overall thermal solution performance 
as processor cooling requirements become stricter.  Thermal interface material 
(TIM) is used to fill in the gap between the die and the bottom surface of the 
heatsink, and thereby improve the overall performance of the stack-up (die-TIM-
Heatsink).  With extremely poor heatsink interface flatness or roughness, TIM may 
not adequately fill the gap.  The TIM thermal performance depends on its thermal 
conductivity as well as the pressure applied to it.  Refer to Section 2.3.3 for 
further information. 
•  The heat transfer conditions on the surface on which heat transfer takes 
place.  Convective heat transfer occurs between the airflow and the surface 
exposed to the flow.  It is characterized by the local ambient temperature of the