HP (Hewlett-Packard) 50g ユーザーズマニュアル

ページ / 887
Page 5-12
Applications of the ARITHMETIC menu
This section is intended to present some of the background necessary for 
application of the ARITHMETIC menu functions.  Definitions are presented next 
regarding the subjects of polynomials, polynomial fractions and modular 
arithmetic.   The examples presented below are presented independently of the 
calculator setting (ALG or RPN)
Modular arithmetic
Consider a counting system of integer numbers that periodically cycles back on 
itself and starts again, such as the hours in a clock.  Such counting system is 
called a ring.  Because the number of integers used in a ring is finite, the 
arithmetic in this ring is called finite arithmetic.  Let our system of finite integer 
numbers consists of the numbers 0, 1, 2, 3, …, n-1, n.  We can also refer to the 
arithmetic of this counting system as modular arithmetic of modulus n.  In the 
case of the hours of a clock, the modulus is 12.  (If working with modular 
arithmetic using the hours in a clock, however, we would have to use the integer 
numbers 0, 1, 2, 3, …, 10, 11, rather than 1, 2, 3,…,11, 12).  
Operations in modular arithmetic
Addition in modular arithmetic
 of modulus n, which is a positive integer,  follow 
the rules that if j and k are any two nonnegative integer numbers, both smaller 
than n, if j+k
 n, then j+k is defined as  j+k-n.   For example, in the case of the 
clock, i.e., for = 12, 6+9 “=” 3.  To distinguish this ‘equality’ from infinite 
arithmetic equalities, the symbol 
≡ is used in place of the equal sign, and the 
relationship between the numbers is referred to as a congruence rather than an 
equality.  Thus, for the previous example we would write 6+9 
 3 (mod 12),
and read this expression as “six plus nine is congruent to three, modulus 
twelve
.”   If the numbers represent the hours since midnight, for example, the 
congruence 6+9 
≡ 3 (mod 12), can be  interpreted as saying that “six hours 
past the ninth hour after midnight will be three hours past noon.”   Other sums 
that can be defined in modulus 12 arithmetic are:  2+5 
≡ 7 (mod 12); 2+10 ≡
0 (mod 12);  7+5 
≡ 0 (mod 12); etcetera.
The rule for subtraction will be such that if j – k < 0, then j-k is defined as j-k+n.
Therefore, 8-10 
 2 (mod 12), is read “eight minus ten is congruent to two, 
modulus twelve.”   Other examples of subtraction in modulus 12 arithmetic 
would be 10-5 
≡ 5 (mod 12);  6-9 ≡ 9 (mod 12); 5 – 8 ≡ 9 (mod 12); 5 –10 ≡
7 (mod 12); etcetera.
Multiplication follows the rule that if j
k > n, so that jk = mn + r, where m and r
are nonnegative integers, both less than n, then j
 r (mod n).  The result of