Avitec AB FD-3100A ユーザーズマニュアル

ページ / 36
 
and the contribution to the 
RF loss is 0.8 dB. In a real 
installation, two optical 
connectors will add 
approximately 0.5 dB of 
optical loss. 
 
The laser and, to a much 
lesser degree, the 
photodiode, add  noise and 
distortion to the RF signal. 
This RF performance is 
characterized just as any 
RF link in terms of dB loss, 
noise figure, third order 
intercept, etc. 
 
The fiber path itself can 
contribute noise and 
distortion. In the 
FiberDAS, the laser used is 
a Fabry-Perot (FP) laser 
instead of a Distributed Feedback (DFB). The DFB has a single spectral component. The FP laser has 
multiple spectral components which can contribute noise and distortion for longer fiber runs. For the 
distances used in the FiberDAS, this effect is not significant. Also, optical backscattering back into the 
laser from less than perfect connections can cause additional noise and distortion. The FP lasers used in the 
FiberDAS are much less sensitive to this than are DFB lasers. DFB lasers are also considerably more 
expensive. However, if optical reflections are severe enough from a bad connection, the resulting optical 
reflection may cause performance degradation even with FP lasers. To minimize this, SC/UPC optical 
connectors with a return loss > 50 dB are used. Following standard practices in cleaning of the removable 
optical connectors (see procedure outlined below) will keep the connections in spec and will avoid the 
problems of performance degradation. 
I
bias
I (mA)
I (mA)
P (
m
W
)
out
I
th
RF
Input
RF
Output (ac coupled
to remove dc component)
Optical
Output
Optical
Input
P (
m
W
)
in
LASER DIODE
CHARACTERISTIC
PHOTODIODE
CHARACTERISTIC
Figure 1-1. Laser and photodiode characteristics. 
1.2.2 Functional Description 
 
The FiberDAS Fiberoptic Antenna System connects to the mobile coverage RF ports of a repeater or base 
station as an extended coverage antenna. The Hub Shelf mounts in a standard 19 inch rack close to the 
repeater or base station transmit and receive RF ports. Generally, the appropriate configuration of the Entry 
Shelf is used for convenience in combining multiple BTS channels, duplexing the signals to separate 
Transmit and Receive, combining, setting the proper RF levels and routing the combined Tx and Rx 
signals to and from one or more Hub Shelves, as necessary. The Hub Shelf RF connections are made via 
the RF connectors on the rear panel. Inside the chassis, the transmit signal is split and routed to the Hub 
Transceiver Plug-Ins. Each plug-in is a dual fiberoptic transceiver. The Hub Shelf holds up to eight plug-
ins. Each plug-in interfaces with up to two Remote Transceivers by way of fiberoptic connections on the 
Hub Shelf rear panel. 
 
Transceiver optical output is the green connector. The Remote Transceiver units are generally mounted 
above the false ceiling on a bulkhead or post. Each Remote Transceiver is connected to an indoor coverage 
antenna by way of a customer-supplied flexible RF cable. Some indoor antennas are available with flexible 
RF cable pigtails and an SMA connector termination. These units are distributed throughout the building or 
campus as necessary to get full coverage. After installation, the transmit power from each Antenna Unit 
may be adjusted manually by way of a rotary dip switch on the unit. This switch is indented in 2 dB steps. 
This is a one time adjustment. For dual band units, there is a separate adjustment for each band. 
1-3