Analog Devices ADP1879 Evaluation Board ADP1879-0.6-EVALZ ADP1879-0.6-EVALZ データシート

製品コード
ADP1879-0.6-EVALZ
ページ / 40
ADP1878/ADP1879 
Data
 Sheet
 
Rev. B | Page 28 of 40 
power dissipation across the internal LDO. Equation 3 shows the 
power dissipation calculations for the integrated drivers and for 
the internal LDO. Table 9 lists the thermal impedance for the 
, which are available in a 14-lead LFCSP_WD. 
Table 9. Thermal Impedance for 14-Lead LFCSP_WD 
Package Thermal 
Impedance 
14-Lead LFCSP_WD θ
JA
 
 
4-Layer Board 
30°C/W 
Figure 85 specifies the maximum allowable ambient temperature 
that can surround th
 IC for a specified 
high input voltage (V
IN
). Figure 85 illustrates the temperature 
derating conditions for each available switching frequency for 
low, typical, and high output setpoints for the 14-lead LFCSP_WD 
package. All temperature derating criteria are based on a 
maximum IC junction temperature of 125°C.  
 
Figure 85. Ambient Temperature vs. V
IN
,  
4-Layer Evaluation Board, C
IN
 = 4.3 nF (High-/Low-Side MOSFET) 
The maximum junction temperature allowed for th
 IC is 125°C. This means that the sum of the ambient 
temperature (T
A
) and the rise in package temperature (T
R
), which is 
caused by the thermal impedance of the package and the internal 
power dissipation, should not exceed 125°C, as dictated by the 
following expression: 
T
J
 = T
R
 × T
A
 
(1) 
where: 
T
J
 is the maximum junction temperature.  
T
R
 is the rise in package temperature due to the power 
dissipated from within. 
T
A
 is the ambient temperature. 
The rise in package temperature is directly proportional to its 
thermal impedance characteristics. The following equation 
represents this proportionality relationship: 
T
R
 = θ
JA
 × P
DR(LOSS)
 
(2) 
where: 
θ
JA
 is the thermal resistance of the package from the junction to 
the outside surface of the die, where it meets the surrounding air. 
P
DR(LOSS)
 is the overall power dissipated by the IC. 
The bulk of the power dissipated is due to the gate capacitance of 
the external MOSFETs and current running through the on-board 
LDO. The power loss equations for the MOSFET drivers and 
internal low dropout regulator (see the MOSFET Driver Loss 
section and the Efficiency Consideration section) are: 
P
DR(LOSS)
 = [V
DR
 × (f
SW
C
upperFET
V
DR
 + I
BIAS
)] +  
[V
REG
 × (f
SW
C
lowerFET
 V
REG
 + I
BIAS
)] (3) 
where: 
C
upperFET
 is the input gate capacitance of the high-side MOSFET. 
C
lowerFET
 is the input gate capacitance of the low-side MOSFET. 
I
BIAS
 is the dc current (2 mA) flowing into the high- and low-
side drivers. 
V
DR
 is the driver bias voltage (the low input voltage (V
REG
) minus 
the rectifier drop (see Figure 83)). 
V
REG
 is the LDO output/bias voltage. 
P
DISS(LDO)
 = P
DR(LOSS)
 + (V
IN
 – V
REG
) × (f
SW
 × C
TOTAL
 ×  
V
REG
 + I
BIAS
 (4) 
where P
DISS(LDO)
 is the power dissipated through the pass device 
in the LDO block across V
IN
 and V
REG
P
DR(LOSS)
 is the MOSFET driver loss. 
V
IN
 is the high voltage input. 
V
REG
 is the LDO output voltage and bias voltage. 
C
TOTAL
 is the C
GD
 + C
GS
 of the external MOSFET.  
I
BIAS
 is the dc input bias current. 
For example, if the external MOSFET characteristics are θ
JA
  
(14-lead LFCSP_WD) = 30°C/W, f
SW
 = 300 kHz, I
BIAS
 = 2 mA, 
C
upperFET
 = 3.3 nF, C
lowerFET
 = 3.3 nF, V
DR
 = 4.62 V, and V
REG
 = 5.0 V, 
then the power loss is 
P
DR(LOSS)
 = [V
DR
 × (f
SWCupperFET
V
DR
 + I
BIAS
)] +  
[V
REG
 × (f
SWClowerFET
V
REG
 + I
BIAS
)]  
= (4.62 × (300 × 10
3
 × 3.3 × 10
−9
 × 4.62 + 0.002)) +  
(5.0 × (300 × 10
3
 × 3.3 × 10
−9
 × 5.0 + 0.002)) 
= 57.12 mW 
P
DISS(LDO)
 = (V
IN
 – V
REG
) × (f
SW
 × C
TOTAL
 × V
REG
 + I
BIAS
) =  
(13 V – 5 V) × (300 × 10
3
 × 3.3 × 10
−9
 × 5 + 0.002)  
= 55.6 mW 
P
DISS(TOTAL)
 = P
DISS(LDO)
 + P
DR(LOSS)
  
= 77.13 mW + 55.6 mW 
= 132.73 mW 
 
130
90
100
110
120
5.5
19.0
17.5
16.0
14.5
13.0
11.5
10.0
8.5
7.0
M
A
X
IM
U
M
 AL
L
O
W
A
B
L
E AM
BI
ENT
TE
M
P
E
R
A
T
U
R
E
 (
°C
)
V
IN
 (V)
09
44
1-
08
5
300kHz
600kHz
1MHz
V
OUT
 = 0.8V
V
OUT
 = 1.8V
V
OUT
 = HIGH SETPOINT