STMicroelectronics EVAL BOARD FOR L6563 EVL6563H-250W EVL6563H-250W データシート

製品コード
EVL6563H-250W
ページ / 49
L6563H
Application information
Doc ID 16047 Rev 3
25/49
6.2 Feedback 
failure protection (FFP)
The OVP function above described handles “normal” over voltage conditions, i.e. those 
resulting from an abrupt load/line change or occurring at start-up. In case the overvoltage is 
generated by a feedback disconnection, for instance when the upper resistor of the output 
divider (R1) fails open, comparator detects the voltage at pin INV. If the voltage is lower than 
1.66 V and the OVP is active, the FFP is triggered, the gate drive activity is immediately 
stopped, the device is shut down, its quiescent consumption is reduced below 180 µA and 
the condition is latched as long as the supply voltage of the IC is above the UVLO threshold. 
At the same time the pin PWM_LATCH is asserted high. PWM_LATCH is an open source 
output able to deliver 2.8 V minimum with 0.25 mA load, intended for tripping a latched 
shutdown function of the PWM controller IC in the cascaded dc-dc converter, so that the 
entire unit is latched off. To restart the system it is necessary to recycle the input power, so 
that the Vcc voltage of both the L6563H goes below 6V and that one of the PWM controller 
goes below its UVLO threshold.
The pin PFC_OK doubles its function as a not-latched IC disable: a voltage below 0.23V 
shutdown the IC, reducing its consumption below 2 mA. In this case both PWM_STOP and 
PWM_LATCH keep their high impedance status. To restart the IC simply let the voltage at 
the pin go above 0.27 V.
Note that these functions offer a complete protection against not only feedback loop failures 
or erroneous settings, but also against a failure of the protection itself. Either resistor of the 
PFC_OK divider failing short or open or a PFC_OK pin floating results in shutting down the 
IC and stopping the pre-regulator. 
6.3 Voltage 
feedforward
The power stage gain of PFC pre-regulators varies with the square of the RMS input 
voltage. So does the crossover frequency fc of the overall open-loop gain because the gain 
has a single pole characteristic. This leads to large trade-offs in the design. 
For example, setting the gain of the error amplifier to get fc = 20 Hz @ 264 Vac means 
having fc   4 Hz @ 88 Vac, resulting in a sluggish control dynamics. Additionally, the slow 
control loop causes large transient current flow during rapid line or load changes that are 
limited by the dynamics of the multiplier output. This limit is considered when selecting the 
sense resistor to let the full load power pass under minimum line voltage conditions, with 
some margin. But a fixed current limit allows excessive power input at high line, whereas a 
fixed power limit requires the current limit to vary inversely with the line voltage. 
Voltage Feedforward can compensate for the gain variation with the line voltage and allow 
minimizing all of the above-mentioned issues. It consists of deriving a voltage proportional to 
the input RMS voltage, feeding this voltage into a squarer/divider circuit (1/V2 corrector) and 
providing the resulting signal to the multiplier that generates the current reference for the 
inner current control loop (see 
).